MEMC-5173

Assignment #4
Reference solutions

Q.1
(Question 5-5 in Book 2)

To find the gradient of Equation (5.25), first we must expand it:
Ew(8) (y — AO)TW(y — A6)

(yT — 8T AT)(Wy — WAB)

yTWy — yTWAO — 6T ATWy + 6T ATWAQ

yTWy — 26T ATWy + 8T ATWAS.

o

By using the identities in Equations (5.2) and Equation (5.6), we can find the
gradient of the preceding equation and set it to zero when 8 = 6:

VEw(0)lg_p = —2ATWy + 2ATWAS = 0.
Therefore the weighted LSE is
6=(ATWA)'ATWy.

Q.2
Redo Example 4.1 in Book 1 but with W =[1,-1,0,-1]", 7 =0.5
with W =[1,-1,0,-11", y=0.5

Suppose that learning rate 7=0.5.

In the example 1, we have 8% =w,” =0.5, whereas here we have 6® =w," =-1.
Epoch I:
Introducing the first input vector x® to the network, we get:

. L

r -2
o =sgn(w® x¥) =sgn| [L-10.-1] 0 =+1=®

-1

J

w® =w® 4 [ —0® [x® =1 +0.5(-2)x® =[0.1.0.0]



Introducing the second input vector x® to the network. we get:
0

2 1.5
0® = sen(w® ¥®) =sen [0.1.0.0] os|l= Lezsit™

-1
w® =w® 4 p[1? =0 |x® =w® +0.5(-2)x? =[0.-0.5.0.5.1]"

Introducing the third input vector x to the network. we get:
-1
@ EINE) 1 @)
0® =sgn(w® x®) =sgn| [0,-0.5.0.5.1] G =-1=t

-1

w® =w® +[1P — 0 ]x® =w® +0.5@)x® =[-1,+0.5,1,0]"

Epoch 2:
We reuse here the training set (x®.#®), (x®.t®).(x®.1) as
{2 A el A ) 1) eshEEtively
Introducing the first input vector x* to the network, we get:
1 h,

)

ra

o® =sen(w® ¥®) =sgn [-1.0.5.1.0] _0 =—1=¢®

-1
y
T
Introducing the second input vector x to the network. we get:

™

0

s r 1.5 )
0® =sgn(w® x®) =sgn| [-1.0.5.1.0] osl|l® +1=1®

-1

A

WO =w® 4 [t —0® 5@ =0 —0.5(2)x® =[-1.-1.1.5.1]”

Introducing the third input vector x® to the network. we get:



=]
1
0® =sgn(w® x®) =sen [-1-L1.5.1] - =-1=1©

-1

w® =w® +7[ 19 —0©@ [x@ = +0.52)x® =[-2.0.2.0]"

Epoch 3:

We reuse here the training set (x*, %), (x®.#?), (x®,?) as
@@, 7Y, (x®, 1), (x®.1°) , Respectively.

Introducing the first input vector ¥ to the network. we get:

!

1
] P 2 ]
0 =sgn(w” x”) =sgn| [-2.0.2.0] = [= 1=

-1

w® =y

o)
Introducing the second input vector x® to the network, we get:
0

155
0® =sen(w® x®) =sen [-2.0.2.0] e ([ —1=r®

-1

\

W = ®

Introducing the third input vector x® to the network. we get:
1N

T 1
0 =sgn(w® x®) =sgn|[-2.0.2.0] o T
2410 — 1 ®

Introducing the input vectors for another epoch will result no change to the weights,
which indicates w®* is the solution of this problem: that is
w=-2,u=0,w,=2And w,=00r =0

And boundary line is equal to:
—2%+2x% =0 OR —x;+x,=0



Q3
Question 4.3(a) in Book 1.

Suppose that w® =[-1 1], 6® =1
Epoch 1:
Introducing (7. 1) as vector (x.7%) to the network, we get:

o® =sen(w® x® —6V) =sgn {[—L 1] [0’} -(=D

W =y O gD g0

™

J

Introducing (U.—1) as vector (x”.#) to the network. we get:

s 2
o® — Sgl](u‘(wx(‘) P = Sg‘ll[ [-L1] L J —(-1)

A

—1=1®

w® =@ 4 p[1® —0® [P =0 ® +.0.5(-2)x® =[-3.-0.5]”
09 =69 —2pi? =-1-2(0.5)(-1)=0
Introducing (7.—1) as vector (x*,7%) to the network, we get:

T 1 )
0o =sgn(w™ x® -9 = sg11[[—3._—0.5]{_}— 0 ] =—1=¢%
2 J

ORI
oW — g®
Introducing (X.1) as vector (x*.7) to the network. we get:

-1
o = sgn(® ¥ — W) = sgn[ [-3. —0.5]{ o }— 1) =1=1®
W@ Z @ g _ g®

Introducing (¥.1) as vector (x.r®) to the network. we get:

hY

-2 _
o™ = sgn(n-(j)rx(j) -9y = sgn{[—S.—O.S]{ 0 } ] =1=£9
W=y  6© =g®
Introducing (Z.1) as vector (x‘“.#“) to the network. we get:

0® = sgn(u'“)rx(s’ — 6(6’) = sgn{[—S.—O.S]{ }

AY

—1=¢®

-1
2
s

W =@ om _g©®

Epoch 2:



Introducing (7. —1) as vector (x”.#”) to the network. we get:
- T . 3 ;
0" =sen(w? ¥ — 7)) = sgn{[—&—o.ﬁ]{oﬂ =—1=7
W® 3D ge _ g

Introducing (U, -1) as vector (x®_#®) to the network, we get:

2 AY
o® = sgn(w‘s’! x®_g®) = sg:n[[—& —0.5]{1 J ] =_1=¢®
W® = ® 9O — g®

Introducing (V.—1) as vector (x*.#) to the network. we get:

™y

T 1
o = sgn(n-(gJ @ 6'(9)) = sgn[ [73. O.S]L} =

A

1=

W0 — ) g — g®

Introducing (X.1) as vector (x“”.#"”) to the network. we get:

r -1
01 = sgn(1w!? x19 — 99 = sgn[ [—3. —0.5]{ 0 B =1=¢19

WD = 3,10 ga0) _ p(10)
As such, the boundary for classifying the patterns is as follows:

x, =—6x,
A
'\’?'
Class (2) 7 O
L U
O
Y X T
[1 [] O >
Wy
x, =——x, = 6x} Class (1)

Wy




Q4.

Book 1:

Use the same training patterns as those in Example 5.1. Assume all initial link weights
are 0.5, learning rate # = 0.2, and maximum tolerable error Ep,x = 0.01. Training should
be undertaken over at least 2 epochs.

f—= =—Ttarget

Step 1: Initialize weights and thresholds to small random values

Step 2: Apply input pattern

op— X1
Q1= X2
0 = X3— -1

Step 3: Forward propagation
O3 = flws000+Ww3101+W3202) = flwse00t1W3101-W32)
O4 = flws000TW4101TW4202) = flws000t1W4101-142)
0Os=-1
Og = flwwg303W640411W6505) = fl 6303 W5404-1165)
O7 = flw7303+Ww7304+1w7505) = fw7303+H1w7404-1975)
Og =-1
Os = fl1wgs06T w9707 W9503) = flWos06T1W9704-1W9g)

Step 4: Output error measure
E=L1(t-0,) +E
Sq = f'(toty )t —o04)
=0,(1-0y)(t—0,)

Step 5. Error back-propagation



Fourth layer weight updates:

. Jew _old s
AWoge =050, Wy =Wy + AWy,
- : id
Awg, =11840, Wy =wg; + Awyg,

. new _ _ old N
AWgg = 11850, Weg =Wyg + Atgg

Third layer error signals:

9
Bt )Z_*n}éc}‘f_ =0, (1—04)Wss5,

6 —
i=9
g

8, = f'(t0t,)D w,6, = 0,(1—0,)wy, 5,
i=9

Third layer weight updates:
Awg, =ndgo, =wal + Awg

new
Wes

= 1 id
AWg, =16s0, Wgy =Wg + AWy,

7 e gnew _old :
Awg =ndg05 W' =wgs +Awgg

g e new __old .
Aw,y =nd,0; wig =wh' + Ao
- : Id
Aw,, =nb,0, wy" =wy +Aw,

. new . old s
Aw,, =80, Wi =wis +Aw,,

Second layer error signals:

f'(rors)zwfs‘gi = 0.50;(1—0;)(We S5 + W33 5; )
i=6

J;

5,

f'(mQ)Zu‘w:S‘,. =0.50,(1— 0, ) (W, 85 + W5, 5;)

i=6

Second layer weight updates:
. new _ _ old A s
AWy =118,0, Wy =Wy, + AW,
o Jnew . old ihiers
Awy =nd;0, Wi =wy +Awy

new

1d
Aw, =60, Wy =wy +Aw,

s o Jqew _ _ old .
Aw, =10,0, Wy =W, +Aw,
- N Jhew _ _ old i
Aw, =nd,0, w, =w, +Aw,
. Iy Jqew o old s
AWy, =10,0, W =W, +AW,

Step 6. Repeat the process starting from step 2 using another exemplar. Once all
exemplars have been used. we finish one epoch.

Step 7: Check if the cumulative error in the output layer is acceptable. If so the network
has been ftrained. If not, repeat the whole process until the desired cumulative error is
achieved.



