APPENDIX A

PIC18 INSTRUCTIONS:
FORMAT AND
DESCRIPTION

| VOVERVIEW +

In the: first section of ‘this appendix, we describe the
instruction format of the PICIS Special emphasis is placesd on the
instructions usmg both WREG and file registers. This section -
includes a list of machme cycles (ciock counts) for each oi' the '
PICIS mstructlons S . S

In the second section of this appendzx, we describe each.

instruction of the PIC18. In many cases, 4 simple programmlng\ .
_example is given to clanfy tlte instruction , :

673

This Appendix deals mainly with PIC18 instructions. In Section A.1, we
describe the instruction formats and categories. In Section A.2, we describe each
instruction of PIC18 with some examples.

SECTION A.1: PIC18 INSTRUCTION FORMATS AND CATE-
GORIES ‘

As shown in Figure A-1, the PIC18 instructions fall into five categories:

1. Bit-oriented instructions

2. Intructions using a literal value

3. Byte-oriented instructions

4. Table read and write instructions

5. Control instructions using branch and call

In this section, we describe the format and syntax with special emphasis
placed on byte-oriented instructions. For some of the instructions, the reader
needs to review the concepts of access bank and bank registers in Chapter 6
(Section 6.3).

Bit-oriented instructions

The bit-oriented instructions perform operations on a specific bit of a file
register. After the operation, the result is placed back in the same file register. For
example, the “BCF f,b,a” instruction clears a specific bit of fileReg. See
Table A-1. In these types of instructions, the b is the specific bit of the fileReg,
which can be 0 to 7, representing the DO to D7 bits of the register. The fileReg
location can be in the bank register called access bank (if a = 0) or a location with-
in other bank registers (if a = 1). Notice that if a = 0, the assembler assumes the
access bank automatically.

Table A-1: Bit-Oriented Instructions (from Microchip datasheet)

Mnemonic, .

Operands Description Cycles
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f b, a|Bit Clear f 1
BSF f, b, a|BitSetf 1

Bit Test f, Skip if Clear

BTFSC ©.b &l b Testf, Skip if Set 1(2or3)
BTFSS f,b,a Bit Toqale f 1(2o0r3)
BTG f.d a 99 1

Look at the examples that follow for clarification of bit-oriented instruc-
tions:

674

Byte-oriented File Register operations
15 10 9 8 7 0
| OPCODE | d | a| f(FILE#

d = 0 for resuit destination to be WREG Register

d = 1 for result destination to be File Register (f)
a = 0 to force Access Bank

a =1 for BSR to select bank

f = 8-bit File Register address
Byte to Byte move operations (2-word)

f = 12-bit File Register address
Bit-oriented File Register operations

15 1211 9 8 7 0
OPCODE|b(BIT#)| a | f(FILE#) |BSF MYREG, bit, B
b = 3-bit position of bit in File Register (f)

a = 0 to force Access Bank
a = 1 for BSR to select bank

f = 8-bit File Register address
Literal operations

15 8 7 0
OPCODE k (literal) |MOVLW Ox7F

k = 8-bit immediate value
Control operations

CALL, GOTO, and Branch operations
15 87 0

| OPCODE | n<7:0> (literal) | GOTO label
15 12 11 0

| 1111 n<19:8> (literal) |

n = 20-bit immediate value

Example Instructions

| ADDWF MYREG, W, B

15 12 11 0

| oPCODE | f(Source FILE#) |MOVFF MYREG1, MYREG2
15 12 11 0

IEEEEI f (Destination FILE #) |

Figure A-1. General Formatting of PIC18 Instructions (From MicroChip)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

675

BCF PORTB,5 ;clear bit D5 of PORTB

BCF TRISE, 4 ;clear bit D4 of TRISC reg
BTG PORTC,7 ;toggle bit D7 of PORTC
BTG PORTD, 0 ;toggle bit DO of PORTD
BSF STATUS,C ;set carry flag to one

The following example uses the fileReg in the access bank:

MyReg SET 0x30 ;set aside loc 30H for MyReg

MOVLW 0x0 ;WREG = O
MOVWF MyReg iMyReg = 0
BTG MYReg, 7 ;toggle bit D7 of MyReg
BTG MYReg,5 ;toggle bit D5 of MyReg

The following example uses the fileReg in the access bank:

MyReg SET 0x50 ;set aside loc. 50H for MyReg
MOVLW 0x0 :WREG = 0

MOVWF MyReg ;MyReg = 0

BTG MYReqg, 2 ;toggle bit D2 of MyReg

BTG MYReg, 4 ;toggle bit D4 of MyReg

As we discuss in Chapter 6, when using a bank other than the access bank,
we must load the BSR (bank select register) with the desired bank number, which
can go from 1 to F (in hex), depending on the family member. We do that by using
the MOVLB instruction. Look at the following examples.

The example below uses a location in Bank 2 (RAM locations 200-2FFH).

YReg SET 0x30 ;eet aside loc 30H for YReg
MOVLB 0Ox2 ;use Bank 2 (address loc 230H)
MOVLW 0x0 :WREG = 0

MOVWF YReg ;YReg = 0

BTG YReg,7,1 ;toggle bit D7 of YReg in bank 2
BTG YReqg,5,1 ;toggle bit D5 of YReg in bank 2

The example below uses a location in Bank 4 (RAM locations 400—4FFH).

ZReg SET 0x10 ;set aside loc 10H for ZReg
MOVLE 0x4 ;use Bank 4 (address loc 410H)
MOVWL 0x0C ;WREG = 0

MOVWF ZReg ;ZReg = 0

BSF ZReg,6,1 ;set HIGH bit D6 of ZReg in bank 4

BSF ZReg,1,1 ;set HIGH bit D1 of ZReg in bank 4

Notice that all the bit-oriented instructions start with letter B (bit). The
branch instructions also start with letter B, like “BZ target” for branch if zero, but
they are not bit-ortented.

676

Table A-2: Literal Instructions (from Microchip datasheet)

Mnemonic,
Operands

LITERAL OPERATIONS
ADDLW k Add literal and WREG
ANDLW k AND literal with WREG

IORLW k Inclusive OR literal with WREG
LFSR f k |Move literal (12-bit} 2nd word
to FSRx 1st word

K | Move literal to BSR<3:0>
MOVLW Kk | Move literal to WREG
MULLW k| Multiply literal with WREG
RETLW Kk | Return with literal in WREG

Kk

k

Description Cycles

N = —a

MCVLB

SUBLW Subtract WREG from literal
XORLW Exclusive OR literal with WREG

_ = N s A aa

Instructions using literal values

In this type of instruction, an operation is performed on the WREG regis-
ter and a fixed value called k. See Table A-2. Because WREG i1s only 8-bit, the k
value cannot be greater than 8-bit. Therefore, the k value is between 0-255 (00-FF
in hex). After the operation, the result is placed back in WREG. Look at the fol-
lowing examples for clarification:

MOVLW 0x45 ;WREG = 45H

ADDLW 0x24 ;WREG = 45H + 24H = 6%H

MOVLW 0x35 ;WREG = 35H

ANDLW 0x0OF ;WREG = 35H ANDed with OFH = O05H
MOVLW 0x55 ;WREG = 55H

XORLW 0XAA ;WREG = 55H EX-ORed with AAH = FFH

Byte-oriented instructions

There are two groups of instructions in this category. In the first group, the
operation is performed on the file register and the result is placed back in the file
register. The instruction “CLRF f,a” is an example in this group. See Table A-3. In
the second group, the operation involves both fileReg and WREG. As a result, we
have the options of placing the result in fileReg or in WREG. As an example in this
group, examine the “ADDWF f,d,a” instruction. The destination for the result can
be WREG (if d = 0) or file register (if d = 1). For the fileReg location, it can be
in the access bank (if a = 0) or in other bank registers (if a = 1). Also notice that
if a =0, the assembler assumes that automatically.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 677

Table A-3: Byte-Oriented Instructions (from Microchip datasheet)

Mnemonic,
Operands

BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f,d,a |Add WREG and f
ADDWFCT, d, a | Add WREG and Carry bit to f]

ANDWF f,d, a | Add WREG with f
CLRF f, a,| Clearf

COMF f,d, a | Complement f

CPFSEQ 1, a,} Compare f with WREG, skip =
CPFSGT f, a,| Compare f with WREG, skip >
CPFSLT f, a,| Compare f with WREG, skip <
DECF f. d, a| Decrement f

DECFSZ f,d, a| Decrement f, Skip if 0
DCFSNZ f, d, a| Decrement f, Skip if Not 0
INCF f, d, a| Increment f

INCFSZ f,d, a| Increment f, Skip if 0
INFSNZ f, d, af Increment f, Skip if Not 0
ICRWF f, d, a| Inclusive OR WREG with f
MOVF f,d, al Move f

MOVFF ., f4| Move fs(source) to 1stword
f4(destination) 2nd word
MOVWF f. 3| Move WREG to

MULWF f, a| Multiply WREG with f
NEGF f, a| Negate f

RLCF f, d, a| Rotate Left f through Carry
RLNCF f, d, a| Rotate Left f (No Carry)
RRCF f, d, a| Rotate Right f through Carry
RRNCF f, d, a| Rotate Right f (No Carry)
SETF f.a.l setf

SUBFWB f, d, a| Subtract f from WREG with
borrow

SUBWF f, d, a| gbtract WREG from f 1
SUBWFB f, d, a| Subtract WREG from f with | 1

borrow
SWAPF f, d, a| Swap nibbles in f 1
TSTFSZ f.a| Test f, Skip if 0 1

XORWF f, d, a| Exclusive OR WREG with f | 1

Description Cycles

I O e .

N = — -4 & & -3 -3 =4 =2 A - =

B T S e . R T Y

678

Look at the following examples.

Whend = 0 and a = 0:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H

MOVWF MyReg iMyReg = 45H

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg ;WREG = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as

“ADDWF MyReg,0,0”.
Whend=1anda=0:

SET
0x45
MyReg
0x23
MyReqg, F

MyReg 0x20
MOVLNW
MOVWF
MOVLW

ADDWFE

;loc 20H for MyReg

;WREG = 45H
;MyReg = 45H
;WREG = 23H
;MyReg = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as
“ADDWF MyReg,F.0” or “ADDWF MyReg,1,0”. As far as the MPLAB is con-
cerned, they mean the same thing. Notice that the use of letter F in “ADDWF
MyReg,F” is being used in place of 1.

To use banks other than the access bank, we must load the BSR register
first. The following example uses a location in Bank 2 (RAM location

200-2FFH).
Whend=0anda=1:

MyReg SET 0x30
MOVLBOx2

MOVLW 0x45
MOVWFEF MyReqg, 1
MOVLW 0x23
ADDWF MyReq, 1

Whend=1anda=1:

SET
0x4
0x45
MyReg
0x23
MyReg,F,1

MyReg 0x20
MOVLB
MOVLW
MOVWF
MOVLW

ADDWF

;WREG =

68H

;set aside location 30H for MyReg
;use Bank 2

(address loc 230H)
;WREG = 45H
;MyReg = 45H
;WREG = 23H

{add loc 230H to W)

(loc 230H)

;loc 20H for MyReg
;use bank 4

;WREG = 45H
;MyReg = 45H (loc 420H)
JWREG = 23H
:MyReg = 68H (loc 420)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

679

Register-indirect addressing mode uses FSRx as a pointer to RAM loca-
tion. We have three registers, FSRO, FSR1, and FSR2, that can be used for
pointers.

Examples:

ADDWF POSTINCO ;add to W data pointed to by FSRO,
;also increment FSRO

ADDWF POSTINC1l ;add to W data pointed to by FSR1
;also increment FSR1

See Example 6-6 in Chapter 6.

Table processing instructions

The table processing instructions allow us to read fixed data located in
the program ROM of the PIC18. See Table A-4. They also aliow us to write into
the program ROM if it is Flash memory. Chapter 14 discusses the TBLRD and
TBLWRT instructions in detail. It also shows how to use table read and write to

access the EEPROM.
Table A-4: Table Processing Instructions (from Microchip datasheet)

I\(/I)r:)eeTa%rgg, Description Cycles
DATA «—»PROGRAM MEMORY OPERATIONS
TBLRD* Table Read 2
TBLRD*+ Table Read with post-increment | 2
TBLRD*- Table Read with post-decrement| 2
TBLRD+* Table Read with pre-increment | 2
TBLWT* Table Write 2
TBLWT*+ Table Write with post-increment | 2
TBLWT*- Table Write with post-decrement| 2
TBLWT +* Table Write with pre-increment 2

Control instructions

The control instructions such as branch and call deal mainly with flow
control. See Table A-5. We must pay special attention to the target address of
the control instructions. The target address for some of the branch instructions
such as BZ (branch if zero) cannot be farther than 128 bytes away from the cur-
rent instruction. The CALL instruction allows us to cal! a subroutine located
anywhere in the 2M ROM space of the PIC18. See the individual instructions in
the next section for further discussion on this issue.

680

Table A-5: Control Instructions (from Microchip datasheet)

%’;g;?:;g’ Description Cycles

CONTROL OPERATIONS

BC n |Branch if Carry 1
BN n | Branch if Negative 1
BNC n {Branch if Not Carry 1
BNN n | Branch if Not Negative 1
BNOV n | Branch if Not Overflow 1
BNZ n | Branch if Not Zero 1
BOV n | Branch if Overflow 1
BRA n | Branch Unconditionally 2
BZ n | Branch if Zero 1
CALL n, s| Call subroutine 1st word 2

2nd word
CLRWDT — |Clear Watchdog Timer 1
DAW — | Decimal Adjust WREG 1
GOTO n |Gotoaddress 1stword 2
2nd word

NOP — | No Operation 1
NOP — | No Operation 1
POP — | Pop top of return stack (TOS) 1
PUSH —— | Push top of return stack (TOS) | 1
RCALL n {Relative Cali 2
RESET Software device RESET 1
RETFIE s | Return from interrupt enable | 2
RETLW k | Return with literal in WREG | 2
RETURN s |Return from Subroutine 2
SLEEP — | Go into standby mode 1

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

681

SECTION A.2: THE PIC18 INSTRUCTION SET

In this section we provide a brief description of each instruction with some
examples.

ADDLW K Add Literal to WREG
Function: ADD literal value of k to WREG
Syntax: ADDLW k

This adds the literal value of k to the WREG register, and places the result
back into WREG. Because register WREG is one byte in size, the operand k must

also be one byte.
The ADD instruction is used for both signed and unsigned numbers. Each
one is discussed separately. See Chapter 5 for discussion of signed numbers.

Unsigned addition

In the addition of unsigned numbers, the status of C, DC, Z, N, and OV
may change. The most important of these flags is C. It becomes 1 when there is a
carry from D7 out in 8-bit (DO-D7) operations.

Example:
MOVLW 0x45 ;WREG = 45H
ADDLW Ox4F ;WREG = 94H (45H + 4FH = 94H)
;0 =0
Example:
MOVLW OxFE ;WREG = FEH
ADDLW 0Ox75 ;WREG = FE + 75 = 73H
;C =1
Example:
MOVLW 0x25 ;WREG = 25H
ADDLW 0Ox42 :WREG = 67H (25H + 42H = 67H)
;€ =0

Notice that in all the above examples we ignored the status of the OV flag.
Although ADD instructions do affect OV, it is in the context of signed numbers
that the OV flag has any significance. This is discussed next.

Signed addition and negative numbers

In the addition of signed numbers, special attention should be given to the
overflow flag (OV) because this indicates if there is an error in the result of the
addition. There are two rules for setting OV in signed number operation. The
overflow flag is set to 1:

1. If there is a carry from D6 to D7 and no carry from D7 out.
2. If there is a carry from D7 out and no carry from D6 to D7.
Notice that if there is a carry both from D7 out and from D6 to D7, OV = 0.

682

Example:
MOVLW +D'8! W 0000 1000
ADDLW +D'4'! ;W = 0000 1100 OV = 0,
;€8 =0, N =20
Notice that N = D7 = 0 because the result is positive, and OV = 0 because
there is neither a carry from D6 to D7 nor any carry beyond D7. Because OV =
0, the result is correct [(+8) + (+4) = (+12)].

Example:
MOVLW +D'66'" ;W = 0100 0010
ADDLW +D'69! ;W = 1000 0101 = -121
ADDWF ;W = 1000 0111 = -121

; (INCORRECT) C = 0, N =D7 = 1, OV = 1

In the above example, the correct result is +135 [(+66) + (+69) = (+135)],
but the result was -121. OV =1 is an indication of this error. Notice that N = 1
because the result is negative; OV = 1 because there is a carry from D6 to D7 and

C=0,
Example:
MOVLW -D'12' ;W = 1111 0100
ADDLW +D'18" W = W + (+0001 0010)
;W = 0000 0110 (+6) correct
;N =0, OV =0, and C = 1

Notice above that the result is correct (OV = 0), because there is a carry
from D6 to D7 and a carry from D7 out.

Example:
MOVLW -D'30! ;W = 1110 0010
ADDLW +D'14' ;W =W + 0000 1110
;W = 1111 0000 (-16, CORRECT)
N =D7 =1, OV =0, C = 0

OV = 0 because there is no carry from D7 out nor any carry from D6 to
D7.

Example:
MOVLW -D'126" ;W 1000 0010
ADDLW -D'127" ;W =W + 1000 0001
;W = 0000 0011 (+3, INCORRECT)
;D7 = N = 0, OV = 1
C = 1 because there is a carry from D7 out but no carry from D6 to D7.

From the above discussion we conclude that while Carry is important in
any addition, OV is extremely important in signed number addition because it is
used to indicate whether or not the result is valid. As we will see in instruction
"DAW", the DC flag is used in the addition of BCD numbers.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 683

ADDWF Add WREG and {
Function: ADD WREG and fileReg
Syntax: ADDWF f,d,a

This adds the fileReg value to the WREG register, and places the result in
WREG (if d = 0) or fileReg (if d = 1). '
The ADDWF instruction is used for both signed and unsigned numbers.
(See ADDLW instruction.)

Example:

MyReqg
MOVLW
MOVWE
MOVLW
ADDWF

SET
0x45
MyReg
Ox4F
MyReqg

0x20

;WREG

;:loc 20H for MyReg

;WREG = 45H

;iMyReg = 45H

;WREG = 4FH

= 94H (45H + 4FH = 94H)
;C =0

We can place the result in fileReg, as shown in the following example:

MyReg
MOVLW
MOVWEF
MOVLW
ADDWF

SET 0x20 ;loc 20H for MyReg
0x45 ;WREG = 45H
MyReg iMyReg = 45H
0x4F ;WREG = 4FH
MyReqg, F ;MyReg = 94H
;(45H + 4FH = 94H), C = 0

For cases of a= 0 and a = 1, see Section A.] in this chapter.

ADDWEFC Add WREG and Carry flag to fileReg
Function: ADD WREG and Carry bit to fileReg
Syntax: ADDWEC fd,a

This will add WREG and the C flag to fileReg (Destination = WREG +
fileReg + C). If C = 1 prior to this instruction, 1 is also added to destination. It C
= (prior to the instruction, source is added to destination plus 0. This instruction
is used in multibyte additions. In the addition of 25F2H to 3189H, for example, we
use the ADDWEFC instruction as shown below.

Example when d = 0:
Assume we have the following data in RAM locations 0x10 and 0x11

0x10 = (F2)
0x11 = (25)

Reg L SET 0x10
Reg H SET 0xl1
BCF STATUS,C

MOVLW 89H

ADDWFC Reg L,1 ;Reg_L

89H
89H + F2H + 0

;loc 0x10 for Reg L
;loc 0x11 for Reg_H
;make carry = 0
;WREG =

7BH

684

;and C = 1
MOVLW 0x31 ;WREG = 31H
ADDWFC Reg 2,1 ;Reg H = 31H + 25H + 1 = 57H

Therefore the result is;

25F2H
+3189H
577BH
ANDLW AND Literal byte with WREG
Function: Logical AND literal value k with WREG
Syntax: ANDLW k
This performs a logical AND on the WREG and |A B|AANDB
the Literal byte operand, bit by bit, storing the result in | © 0 0
the WREG, o e
1 §] 0
Example: 1 1 1
MOVLW 0x39 ;W = 38H
ANDLW (0x09 ;W = 39H ANDed with 09
39H 0011 1001
G9H 0000 1901
09H 0000 1001
Example:
MOVLW 32H ;W = 32H 32H 0011 0010
ANDLW 50H ;AND W with S0H 0101 0000
; (W = 10H) 10H 0001 0000
ANDWF AND WREG with fileReg
Function: Logical AND for byte variables
Syntax: ANDWF fd,a

This performs a logical AND on the fileReg value and the WREG register,
bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x39 ;W = 39H
MOVWF MyReg iMyReg = 39H
MOVLW 0x09
ANDWF MyReg ;39H ANDed with 09 (W = 09)

3%H 0011 1001
0SH 0Q00 1001
09H 0000 1001

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 685

Example:
MyReg SET 0x40;set MyReg loc at 0x40

MOVLW 0x32 ;W = 32H

MOVWF MyReg ;MyReg = 32H

MOVLW OxOF ;WREG = OFH

ANDLW MyReg ;32H ANDed with OFH (W = 02)

32H 0011 0010
OFH 0000 1111
02H 0000 0010
We can place the result in fileReg as shown in the examples below:

MyReg SET 0x40;set MyReg loc at 0x40

MOVLW 0x32 ;W = 32H
MOVWF MyReg ;MyReg = 32H
MOVLW 0x50 ;WREG = 50H

ANDLW MyReg,F ;MyReg = 09, WREG = 50H

The instructions below clear (mask) certain bits of the output ports, assum-
ing the ports are configured as output ports:

MOVLW OXFE
ANDWF PORTB,F ;mask PORTB.0 (DO of Port B)
MOVLW Ox7F
ANDWF PORTC,F ;mask PORTC.7 (D7 of Port C)
MOVLW OxF7
ANDWF PORTD,F ;mask PORTD.3 (D3 of Port D)

Branch Condition

Function: Conditional Branch (jump)

In this type of Branch (jump), control is transferred to a target address if
certain conditions are met. The following is list of branch instructions dealing
with the flags:

BC Branch if carry jump if C=1
BNC Branch if no carry jump if C=0
BZ Branch if zero jump if Z =1
BNZ Branch if no zero Jump if Z=0
BN Branch if negative jump if N=1
BNN Branch if no negative jump if N =0
BOV Branch if overflow jump if OV =1
BNOV Branch if no overflow jump if OV =10

Notice that all “Branch condition™ instructions are short jumps, meaning
that the target address cannot be more than -128 bytes backward or +127 bytes for-
ward of the PC of the instruction following the jump. In other words, the target
address cannot be more than 128 to +127 bytes away from the current PC. What

686

happens if a programmer needs to use a “Branch condition” to go to a target
address beyond the -128 to +127 range? The solution is to use the “Branch con-
dition” along with the unconditional GOTO instruction, as shown below.

ORG 0x100

MOVLW 0x87 :WREG = 87H

ADDLW 0x95 ;C = 1 after addition

BNC NEXT ;branch if € = 0

GOTO OVER ; target more than 128 bytes away
NEXT:

ORG 0x5000
OVER: MOVWE PORTD
BC Branchif C=1

Function: Branch if Carry flag bit = 1
Syntax: BC target address

This instruction branches if C = 1.

Example:
MOLW 0x0 ;WREG = 0

BACK ADDLW 0Ox1 ;add 1 to WREG
BC EXIT ;exit if C = 1
BRA BACK ;keep doing it

EXIT

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this issue.

BCF Bit Clear fileReg

Function: Clear bit of a fileReg
Syntax: BCF f,b,a

This instruction clears a single bit of a given file register. The bit can be
the directly addressable bit of a port, register, or RAM location. Here are some
examples of its format:

BCF STATUS,C ;C =0

BCF PORTB, 5 ;CLEAR PORTB.5 (PORTB.S 0)

BCF PORTC, 7 ; CLEAR PORTC.7 (PORTC.7 0)

BCF MyReg,1 ;CLEAR D1 OF File Register MyFile

i

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 687

BN Branchif N=1

Function: Jump if Negative flag bit = |
Syntax: BN target_address

This instruction branches if N = 1. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-
get address cannot be more than -128 to +127 bytes away from the program count-
er. See Branch Condition for further discussion on this issue.

BNC Branch if no Carry

Function: Branch if Carry flag is 0
Syntax: BNC target_address

This instruction examines the C flag, and if it is zero it will jump (branch)
to the target address.

Example: Find the total sum of the bytes F6H, 98H, and 8AH. Save the car-
ries in register C_Reg.

C_Reg SET 0x20 ;set aside loc 0x20 for carries

MOVLW 0x0 ;W = 0
MOVWF C _Reg ;C Reg = 0
ADDLW 0xFe6
BNC OVER1
INCF C _Regq,F
OVER1: ADDLW 0x98
BNC OVER2
INCF € Reg,F
OVERZ: ADDWEF 0x8A
BNC OVER3
INCF C_Reg
OVER3 :

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this.

BNN Branch if Not Negative
Function: Branch if Negative flag bit = 0
Syntax: BNN target address

This instruction branches if N = 0. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-
get address cannot be more than -128 to +127 bytes away from the program count-
er. See Branch Condition for further discussion on this issue.

688

BNOV Branch if No Overflow

Function: Jump if overflow flag bit =0
Syntax: BNOV target_address

This instruction branches if OV = 0. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-
get address cannot be more than -128 to +127 bytes away from the program count-
er. See Branch Condition for further discussion on this issue.

BNZ Branch if No Zero
Function: Jump if Zero flag is 0
Syntax: BNZ target address

This instruction branches if Z = 0.

Example:
CLRF TRISR ; PORTB as output
CLRF PORTB sclear PORTEB
OVER INCF PORTB,F ; INC PORTB
BNZ OVER ;do it until it becomes zero

Example: Add value 7 to WREG five times.

COUNTER SET 0x20 ;loc 20H for COUNTER

MOVLW 0x5 ;WREG = 5
MOVWF COUNTER ;COUNTER = 05
MOVLW 0x0 ;WREG = 0
OVER ADDLW 0x7 ;add 7 to WREG
DECF COUNTER,F ;decrement counter
BENZ OVER ;do it until counter is zero

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this issue.

BOV Branch if Overflow
Function: Jump if Overflow flag = 1
Syntax: BOV target address

This instruction jumps if OV = 1. It is used in signed number addition. See
ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target
address cannot be more than -128 to +127 bytes away from the program counter.
See Branch Condition for further discussion on this issue.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 689

BRA Branch unconditional

Function: Branch unconditionally
Syntax: BRA target address

BRA stands for “Branch.” It transfers program execution to the target
address unconditionally. The target address for this instruction must be within 1K
of program memory. This is a 2-byte instruction. The first 5 bits is the opcode and
the rest is the signed number displacement, which is added to the PC (program
counter) of the instruction following the BRA to get the target address. Therefore,
in this branch, the target address must be within -1024 to +1023 bytes of the PC
(program counter) of the instruction after the BRA because the 11-bit address can
take values of +1024 to -1023. This address is often referred to as a relative
address because the target address is 1024 to +1023 bytes relative to the program
counter (PC).

BSF Bit Set fileReg
Function: Set bit
Syntax: BSFf,b,a

This sets HIGH the indicated bit of a file register. The bit can be any direct-
ly addressable bit of a port, register, or RAM location.

Examples:
BSF PORTE, 3 ;make PORTB.3 = 1
BSF PORTC, 6 ;make PORTC.6 = 1
BSF MyReg,2 ;make bit D2 of MyReg = 1
BSF STATUS,C ;set Carry Flag C = 1
BTFSC Bit Test fileReg, Skip if Clear
Function: Skip the next instruction if bit is 0
Syntax: BTFSC{, b,a

This instruction is used to test a given bit and skip the next instruction if
the bit is low. The given bit can be any of the bit-addressable bits of RAM, ports,
or registers of the PICIS8.

Example: Monitor the PORTB.5 bit continuously and, when it becomes low, put
55H in WREG.

BSF TRISB,5 ;make PORTB.5 an input bit
HERE BTFSC PORTB,5 ;skip if PORTB.5 = 0

BRA HERE

MOVLW 0x55 ;because PORTB.5 = 0,

;put 55H in WREG

690

Example: See if WREG has an even number. If so, make it odd.

BTFSC WREG, 0 ;skip if it is odd
BRA NEXT
ADDLW 0Ox1 ;it is even, make it odd
NEXT :
BTFSS Bit Test fileReg, Skip if Set
Function: Skip the next instruction if bit is 1
Syntax: BTFSS £, b, a

This instruction is used to test a given bit and skip the next instruction if
the bit is HIGH. The given bit can be any of the bit-addressable bits of RAM,

ports, or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and when it becomes

HIGH, put 55H in WREG.

BSF TRISH,5 ;make PORTB.5 an input bit

HERE BTFSS PORTB,5 ;skip if PORTB.5 = 1
BRA HERE

MOVLW 55H ;because PORTB.5 = 0 WREG 55H
Example: See if WREG has an odd number. If so, make it even.
BTFSS WREG, 0 ;skip 1if it is even
BRA NEXT
ADDLW 0Ox01 ;it is even, make 1t odd
NEXT:
BTG Bit Toggle fileReg

Function: Toggle (Complement) bit
Syntax: BTG f, b, a

This instruction complements a single bit. The bit can be any bit-address-

able location in the PIC18.

Example:
BCF TRISE, O ;make PORTB.0 an output
AGAIN BTG PORTE,Q ;complement PORTB.O bit
BRA AGAIN ;continuously forever

Example: Toggle PORTB.7 a total of 150 times.

COUNTER SET 0x20 ;loc 20H for COUNTER
MOVLW ‘Df150 ;WREG = 150
MOVWEF COUNTER ;COUNTER = 1590
BCF TRISB,7 ;make PORTB.7 an output

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

691

OVER BTG PORTB.7 ;toggle PORTB.7
DECF COUNTER,F ;decrement and put it in

: COUNTER
BNZ OVER ;do it 150 times
BZ Branch if Zero
Function: Branchif Z=1
Syntax: BZ target_address

Example: Keep checking PORTB for value 99H.

SETF TRISB ;port B as input
BACK MOVFW PORTB ;get PORTB into WREG

SUBLW 0x99 ;subtract 99H frow it

BZ EXIT ;1if 0x99, exit

BRA BACK ;keep checking

EXTIT:

Example: Toggle PORTB 150 times.

MyReg SET 0x40 ;loc 40H for MyReg
SETF TRISB jport B as output
MOVLW D'150! ;WREG = 150
MOVWF MyRegq

BACK COMF PORTB ;toggle PORTB
DECF MyReg,F ;decrement MyReg
BZ EXIT ;1f MyReg = 0, exit
BRA BACK ;keep toggling

EXTIT:

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this.

CALL

Function: Transfers control to a subroutine
Syntax: CALL k,s ;s is used for fast context switching

The Call intruction is a 4-byte instruction. The first 12 bits are used for the
opcode and the rest (20 bits) are set aside for the address. A 20-bit address allows
us to reach the target address anywhere in the 2M ROM space of the PIC18. If
calling a subroutine, the PC register (which has the address of the instruction after
the CALL) is pushed onto the stack and the stack pointer (SP) is incremented by
1. Then the program counter is loaded with the new address and control is trans-
ferred to the subroutine. At the end of the procedure, when RETURN 1s executed,
PC is popped off the stack, which returns control to the instruction after the CALL.

Notice that CALL is a 4-byte instruction, in which 12 bits are the opcode,
and the other 20 bits are the 20-bit address of an even address location. Because

692

all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is auto-
matically set to zero to make sure that the CALL instruction will not land at the
middle of the targeted instruction. The 20-bit address of the CALL provides the
A20-A1 part of the address and with the AO = 0, we have the 21-bit address need-
ed to go anywhere in the 2M address space of the PIC18.

We have two options for the “CALL k,s” instruction. They are s =0, and
s = |. When s = 0, it is simply calling a subroutine. With s = 1, we are calling a
subroutine and we are also asking the CPU to save the three major registers of
WREG, STATUS, and BSR in internal buffers (shadow registers) for the purpose
of context-switching. This fast context-switching can be used only in the main
subroutine because the depth of the shadow registers is only one. That means no
nested call with the s = 1. Look at the following case:

ORG 0x0
MAIN ...
CALL M SUB,1 ;call and save the registers
MOVLW 0x55 ;address of this instruction is saved on stack
ORG 0x2000
M SUB ...
CALL Y _SUB ;we cannot use CALL'Y SUB,I
MOVLW 0xAA;address of this instruction is saved on stack
RETURN,1 ;return to caller and restore the registers
:notice the s = 1 for RETURN
ORG 0x3000
Y SUB
RETURN
END

As shown in RETURN instruction, we also have two options for the
RETURN:s=0and s=1. If we use s =1 for the CALL, we must also use s = 1
for the RETURN. Notice that “CALL Target” with no number after it is inter-
preted as s = 0 by the assembler. Likewise, the “RETURN” with no number after
it 1s interpreted as s = 0 by the assembler.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 693

CLRF Clear fileReg

Function: Clear
Syntax: CLRF f, a

This instruction clears the entire byte in the fileReg. All bits of the register
are cleared to 0.

Example:
MyReg SET 0x20 ;loc 20H for MyReg
CLRF MyReg ;clear MyReg
CLRF TRISB ;clear TRISB (make PORTB output}
CLRF PORTB ;clear PORTB
CLRF TMRO1L ; TMROL = 0

Notice that in this instruction the result can be placed in fileReg only and
there is no option for the WREG to be used as the destination.

CLRWDT
Function: Clear Watchdog Timer
Syntax: CLRWDT

This instruction clears the Watchdog Timer.

COMF Complement the fileReg
Function: Complement a fileReg
Syntax: COMF f,d, a

This complements the contents of a given fileReg. The result is the 1's
complement of the register; that is, Os become 1Is and 1s become 0s. The result
can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MOVLW 0x0 ;WREG = 0
MOVWEF TRISB ;Make PORTB an output port
MOVLW 0x55 ;WREG = 01010101
MOVWF PORTB
AGAIN COMF PORTB,F ;complement (toggle) PORTB
CALL DELAY
BRA AGAIN ;continuously (notice WREG = 55H)
Example:

MyReg SET 0x40;set MyReg loc at 0x40

MOVLW 0x38% ;W = 39H

MOVWF MyReg iMyReg = 39H

COMPF MyReg,F ;MyReg = C6H and WREG = 39H
Where 39H (0011 1001 bin) becomes C6H (1100 0110).

694

Example:
MyReg SET 0x40;=set MyReg loc at 0x40
MOVLW 0x55 ;W = BSH
MOVWE MyReg ;MyReg = 55H
COMPF MyReg,F ;MyReg AAH, WREG = 5h5H

where 55H (0101 0101) becomes AAH (1010 1010).

Example: Toggle PORTB 150 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETF TRISB ;port B as output
MOVLW D'150' ;WREG = 150

MOVWEF COUNTER ;COUNTER = 150
MOVLW 0x55 ;WREG = bbLH

MOVWF PORTEB
BACK COMF PORTB,F ;toggle PORTB
DECF COUNTER,F ;decrement COUNTER
BNZ BACK ;toggle until counter becomes 0

We can place the result in WREG as shown in the examples below:

MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x39 ;W = 39H
MOVWF MyReg iMyReg = 35H
COMPF MyReg iMyReg = 39H and WREG = CéH

Example:
MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x55 ;W = B55H
MOVWF MyReg ;MyReg = 55H
COMPF MyReg ;WREG = AA and MyReg 55H SETF

CPFSEQ Compare FileReg with WREG and skip if equal (F = W)

Function: Compare fileReg and WREG and skip if they are equal
Syntax: CPFSEQ f, a

The magnitudes of the fileReg byte and WREG byte are compared. [f they
are equal, it skips the next instruction,

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has the value 99H.

SETF TRISB ; PORTB an input port
MOVLW 0x993 ;WREG = 9%h

BACK CPFSEQ PORTB ;skip if PORTB has 0x99
BRA BACK ;keep monitoring

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 695

Notice that CPFSEQ skips only when fileReg and WREG have equal val-
ues.

CPESGT Compare FileReg with WREG and skip if greater (F > W)

Function: Compare fileReg and WREG and skip if fileReg > WREG.
Syntax: CPFSGT f,a '

The magnitudes of the fileReg byte and WREG byte are compared. If
fileReg is larger than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has a value greater than 99H.

SETF TRISE ;PORTB an input port
MOVLW 0x99 ;WREG = 9%H

BACK CPFSGT PORTEB ;skip 1f PORTB > 99H
BRA BACK ; keep monitoring

Notice that CPFSGT skips only if FileReg is greater than WREG.

CPFSLT Compare FileReg with WREG and skip if less than (F < W)

Function: Compare fileReg and WREG and skip if fileReg < WREG.
Syntax: CPFSLT 1, a

The magnitudes of the fileReg byte and WREG byte are compared. If
fileReg is less than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has a value less than 99H.

SETF TRISB ; PORTB an input port
MOVLW 0x99 ;WREG = 98H

BACK: CPFSEQ PORTB ;skip i1f PORTB < 99H
BRA BACK ;keep monitoring

Notice that CPFSLT skips only if FileReg < WREG.

DAW

Function: Decimal-adjust WREG after addition
Syntax: DAW

This instruction is used after addition of BCD numbers to convert the result
back to BCD. The data is adjusted in the following two possible cases:

1. It adds 6 to the lower 4 bits of WREG if it is greater than 9 or if DC = 1.
2. It also adds 6 to the upper 4 bits of WREG if it is greater than 9 or if C = 1.

696

Example:

MOVLW 0x47
ADDLW 0x38

DAW

47H

+ 38H

7FH
+ _6H
85H

;WREG = 0100 0111
sWREG = 47H + 38H = 7FH,
;invalid BCD

;WREG = 1000 0101 = 85H, wvalid BCD

(invalid BCD)
{after DAW)
{valid BCD)

In the above example, because the lower nibble was greater than 9, DAW
added 6 to WREG. If the lower nibble is less than 9 but DC = 1, it also adds 6 to
the lower nibble. See the following example:

MOVLW 0x29 ;WREG = 0010 1001
ADDLW 0x18 ;WREG = 0100 0001 INCORRECT
DAW ;WREG = 0100 0111 = 47H VALID BCD
29H

+_18H
41H (incorrect result in BCD)

+_6H
47H correct result in BCD

The same thing can happen for the upper nibble. See the following example:

MOVLW 0x52 ;WREG = 0101 0010
ADDLW 0x91 ;WREG = 1110 0011 INVALID BCD
DAW ;WREG = 0100 0011 AND C =1
52H
+ 91H
E3H (invalid BCD)
+6 (after DAW, adding to upper nibble)
143H valid BCD

Similarly, if the upper nibble is less than 9 and C = 1, it must be corrected.
See the following example:

MOVLW 0x54 ;W = 1001 0100

ADDLW 0x91 ;W = 0010 0101 INCORRECT

DAW ;W = 1000 0101, VALID BCD
;FOR 85, C = 1

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

697

94H

+_91H

1 25H (incorrect BCD)

+6 (after DAW, adding to upper nibble)
185

It is possible that 6 is added to both the high and low nibbles. See the fol-
lowing example:

MOVLW 0x5b4 ;WREG = 0101 0100
ADDLW 0x87 ;WREG = 1101 1011 INVALID BCD
DAW ;WREG = 0100 0001, C = 1 (BCD 141)
54H
+ B7H
DEH {invalid result in BCD)
+ 6 6H
1 4 1H valid BCD
DECF Decrement fileReg
Function: Decrement fileReg
Syntax: DECF f, d, a

This instruction subtracts 1 from the byte operand in fileReg. The resuit
can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40 ;set aside loc 40H for MyReg
MOVLW 0x99 ;WREG = 99H
MOVWF MyReg ;MyReg = 99H

DECF MyReg,F ; MyReg
DECF MyReg, F ; MyReg
DECYF MyReg,F ;i MyReg

98H, WREG 93%H
97H, WREG 99H
96H, WREG 99H

H

Example: Toggle PORTB 250 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETEF TRISB ; PORTB as output
MOVLW D'250' ;WREG = 250
MOVWF COUNTER ;COUNTER = 250
MOVLW (0x55 ;WREG = G55H

MOVWE PORTB
BACK COMF PORTB,F ;toggle PORTB
DECF COUNTER,F ;decrement COUNTER
BNZ BACK ;toggle until counter becomes 0

698

We can place the result in WREG as shown in the examples below:

MyReg SET 0x40 ;set aside loc for MyReg

MOVLW 0x99% ;WREG = 99H

MOVWF MyReg ;MyReg = 99H

DECF MyReg ;WREG = 98H, MyReg = 99H

DECF MyReg ;WREG = 97H, MyReg = S9H

DECF MyReg ;WREG = 96H, MyReg = S9H
Example:

MyReg SET 0x50 ;set MyReg loc at 0x50

MOVLW 0x39 ;W = 39H

MOVWF MyReg ;MyReg = 39H

DECF MyReg ;WREG = 38H and MyReg = 39H
DECF MyReg ;WREG = 37H and MyReg = 39H
DECF MyReg ;WREG = 36H and MyReg = 35H
DECF MyReg ;WREG = 35H and MyReg = 39H
DECFSZ Decrement fileReg and Skip if zero
Function: Decrement fileReg and skip if fileReg has zero in it
Syntax: DECFSZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result
is zero, then it skips execution of the next instruction.

Example: Toggle PORTB 250 times.

COUNT SET 0x40 ;loc 40H for COUNT
CLRF TRISB ; PORTB an output
MOVLW D'250' ;WREG = 250
MOVWF COUNT ; COUNT = 250
MOVLW 0x55 ;WREG = 55H

MOVWF PORTB
BACK COMF PORTB,F ;toggle PORTB
DECFSZ COUNT,F ;decrement COUNT and
;skip if zero
BRA BACK ;toggle until counter becomes 0

DECFSNZ Decrement fileReg and skip if not zero
Function: Decrement fileReg and skip if fileReg has other than zero
Syntax: DECFSNZ £, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result
is not zero, then it skips execution of the next instruction.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 699

Example: Toggle PORTB 250 times continuously.

COUNT SET 0x40 ;loc 40H for COUNT
CLRF TRISB ; PORTEB an output
CVER MOVLW D'250! ;WREG = 250
MOVWF COUNT ; COUNT = 250
MOVLW 0x55 ;WREG = 55H

MOVWEF PORTE
BACK COMF PORTEB,F ;toggle PORTB
DECFSNZ COUNT,F ;decrement COUNT and
;skip if zero
BRZ OVER ;etart over
BRA BACK ;toggle until counter becomes 0

GOTO Unconditional Branch
Function: Transfers control unconditionally to a new address.
Syntax: GOTO k

In the PIC18 there are two unconditional branches (jumps): GOTO (long

jump) and BRA (short jump). Each is described next.

1.

GOTO (long jump): This is a 4-byte instruction. The first 12 bits are the
opcode, and the next 20 bits are an even address of the target location. Because
all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is
automatically set to zero to make sure that the GOTO instruction will not land
at the middle of the targeted instruction. The 20-bit address of the GOTO pro-
vides the A20-A1 part of the address and with A0 = 0, we have the 21-bit
address needed to go anywhere in the 2M address space of the PIC18.

BRA: This is a 2-byte instruction. The first 5 bits are the opcode and the
remaining 11 bits are the signed number displacement, which is added to the
PC (program counter) of the instruction following the BRA to get the target
address. Therefore, for the BRA instruction the target address must be
within -1023 to +1024 bytes of the PC of the instruction after the BRA because
a 11-bit address can take values of +1023 to -1024.

While GOTO is used to jump to any address location within the 2M code
space of the PIC18, BRA is used to jump to a location within the 1K ROM
space. The advantage of BRA is the fact that it takes 2 bytes of program ROM,
while GOTO takes 4 bytes. BRA is widely used in chips with a small amount
of program ROM and a limited number of pins.

Notice that the difference between GOTO and CALL is that the CALL
instruction will return and continue execution with the instruction following
the CALL, whereas GOTO will not return.

700

INCF Increment fileReg

Increment
INCFf,d,a

Function:
Syntax:

This instruction adds 1 to the byte operand in fileReg. The result can be
placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40 ;set aside loc 40H for MyReg
MOVLW 0x99 ;WREG = 9SH
MOVWF MyReg
INCF MyReg,F ;MyReg = 9AH, WREG 99H
INCF MyReg,F ;MyReg = 9BH, WREG 99H
DECF MyReg,F ;MyReg = 9CH, WREG 99H

Example: Toggle PORTB 5 times.

COUNTER SET
SETF TRISB
MOVLW D‘251°
MOVWEF COUNTER
MOVLW 0x55
MOVWE PORTB
COMF PORTB,F
INCF COUNTER,F

0x40

BACK

;loc 40H for COUNTER
; PORTB as output

JWREG = 251
; COUNTER = 251
;WREG = bBH

;toggle PORTB
; INC COUNTER

BNC BACK ;toggle until counter becomes 0
We can place the result in fileReg as shown in the examples below:

MyReg SET 0x40 ;set aside loc for MyReg

MOVLW 0x99 ;WREG = 99H
MOVWF MyReg ;MyReg = 93H
INCF MyReg ;WREG = 9AH, MyReg = 99H
INCF MyReg ;WREG = 9BH, MyReg = 99H
Example:
MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x5 ;W = 0BH
MOVWE MyReg ;MyReg = 05GH
INCF MyReg ;WREG = 06H and MyReg = 05H
INCFSZ Increment fileReg and skip if zero
Function: Increment
Syntax: INCFSZ £, d, a
APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 701

This instruction adds 1 to fileReg and if the result is zero it skips the next
instruction.

Example: Toggle PORTB 156 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETF TRISB ; PORTB as output
MOVLW D'1l56" ;WREG = 156
MOVWF COUNTER ;COUNTER = 156
MOVLW 0x55 ;WREG = 55H

MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
INCFSZ COUNTER,F ;INC COUNTER and skip if 0
BRA BACK ;toggle until counter becomes 0

INCFSNZ __ Increment fileReg and skip if not zero

Function: Increment
Syntax: INFSNZ f, d, a

This instruction adds 1 to the register or memory location specified by the
operand. If the result is not zero, it skips the next instruction.

Example: Toggle PORTB 156 times continuously.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETF TRISEB ; PORTE as output
OVER MOVLW D'156" ;WREG = 156

MOVWEF COUNTER ;COUNTER = 156

MOVLW 0x55 ;WREG = 55H

MOVWF PORTE
BACK COMF PORTB,F ;toggle PORTB
INCFSNZ COUNTER, F; INC COUNTER, skip if not 0
BRA OVER ;start over
BRA BACK ;toggle until counter becomes 0

TORLW OR K value with WREG
Function: Logical-OR WREG with value k
Syntax: [ORLW k

This performs a logical OR on the WREG register and k value, bit by bit,
and stores the result in WREG.

A B|AORB
Example: 0 0 0
MOVLW 0x30 ;W = 30H 0 1 1
IORLW 0x09 ;now W = 39H 1 0 1
1 1 1

702

s e —————————
TP ——

39H 0011 0000
09H 0000 1001
39 0011 1001
Example:
MOVLW 0x32 ;W = 32H
IORLW 0x50 ; (W = 72H)
32H 0011 0010
50H 0101 Q000
72H 0111 0010
IORWF OR FileReg with WREG
Function: Logical-OR fileReg and WREG
Syntax: IORWF f,d, a

This performs

a logical OR on the fileReg value and the WREG register,

bit by bit, and places the result in WREG (if d = 0) or fileReg (if d =).

Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x39 ;WREG = 39H
MOVWF MyReg ;iMyReg = 39H
MOVLW 0x07
IORWF MyReg ;39H ORed with 07 (W = 3F)
39 0011 1001
07 go0CG0 0111
3F 0011 1111
Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x5 ;WREG = O0O5H
MOVWF MyReg ;MyReg = 05H
MOVLW 0x30
IORWF MyReg ;30H ORed with 05 (W = 35H)
05 0000 0101
30 0011 0000
35 0011 0101

We can place the result in filcReg as shown in the examples below:

MOVLW 0x30

IOCRWF PORTE,F

;W = 30H
;W and PORTB are ORed and result
;goes to PORTE

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

703

Example:

MyReg SET 0x20

MOVLW 0x54 ;WREG = b54H
MOVWEF MyReg

MOVLW 0x67 ;WREG = 67H

IORWF MyReg,F ;OR WREG and MyReg
;after the operation MyReg = 77H

44H 0101 0100
67H 0110 0111
77H 0111 0111 Therefore MyReg will have 77H, WREG = 54H.

LFSR Load FSR
Function: Load into FSR registers a 12-bit value of k
Syntax: LFSR fk ;k is between 000 and FFFH

FSR2.

This loads a 12-bit value into one of the FSR registers of FSRO, FSR1, or

LFSR 0 , 0x200 ;FSRO 200H
LFSR 1 , 0x050 ;FSR1 = 050H
LFSR 2 , 0x160 ;FSR2 1e0H

]

This is widely used in register indirect addressing mode. See Chapter 6.

MOVF (or MOVFW) Move fileReg to WREG

Function: Copy byte from fileReg to WREG
Syntax MOVF {, d, a:

This instruction is widely used for moving data from a fileReg to WREG. Look
at the following examples:

CLRF TRISC ; PORTC output

SETF TRISB ; PORTB as input
MOVFW PORTB ;copy PORTB to WREG
ANDLW 0xOF ;mask the upper 4 bits
MOVWEF PORTC ;put it in PORTC
Example:

CLRF TRISD ; PORTD as output
SETF TRISBE ; PORTB as input
MOVEW PORTB ;copy PORTB to WREG
TIORW 0x30 ;OR it with 30H
MOVWF PORTD ;put it in PORTD

This instruction can be used to copy the fileReg to itself in order to get the status
of the N and Z flags. Look at the following example.

704

Example:

MyReg SET 0x20 ;set aside loc 0x20 to MyReg
MOVLW 0x54 ;W = 54H

MOVWF MyReg ;MyReg = 54H

MOVFW MyReg,F ;My Reg = 54, also N = 0 and Z = O

MOVFF Move FileReg to Filereg

Function: Copy byte from one fileReg to another fileReg
Syntax: MOVFF fs, fd

This copies a byte from the source location to the destination. The source
and destination locations can be any of the file register locations, SFRs, or ports.

MOVFF PORTB, MyReg
MOVFF PORTC, PORTD
MOVEF RCREG, PORTC
MOVFEF Regl, REG2

Notice that this a 4-byte instruction because the source and destination
address each take 12 bits of the instruction. That means the 24 bits of the instruc-
tion are used for the source and destination addresses. The 12-bit address allows
data to be moved from any source location to any destination location within the

4K RAM space of the PIC18.

MOVLB Move Literal 4-bit value to lower 4-bit of the BSR
Function: Move 4-bit value k to lower 4 bits of the BSR registers
Syntax: MOVLB k :k is between 0 and 15 (0—F in hex)

We use this instruction to select a register bank other than the access bank.
With this instruction we can load into the BSR (bank selector register) a 4-bit value
representing one of 16 banks supported by the PIC18. That means the values
between 0000 and 1111 (0-F in hex). For examples of the MOVLB instruction,
see Chapter 6 and Section A.1 in this chapter.

MOVLW K Move Literal to WREG
Function: Move 8-bit value k to WREG

Syntax: MOVLW k ks between 0 and 255 (0—FF in hex)
Example:

MOVLW 0x55 ;WREG = 55H

MOVLW 0x0 ;clear WREG (WREG = 0)

MOVLW 0xC2 ;WREG = C2H

MOVLW 0x7F ;WREG = 7FH

This instruction, along with the MOVWF, is widely used to load fixed val-
ues into any port, SFR, or fileReg location. See the next instruction to see how it
is used.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 705

MOVWF Move WREG to a fileReg

Function: Copy the WREG contents to a fileReg
Syntax: MOVWF f, a

This copies a byte from WREG to fileReg. This instruction is widely used
along with the MOVLW instruction to load any of the fileReg locations, SFRs, or

PORTSs with a fixed value. See the following examples:

Example: Toggle PORTB.

MOVLW 0x55 ;WREG = 55H

MOVWEF PCRTB

MOVLW OxAA ;WREG = AAH

MOVWF PORTB

BRA OVER ;keep toggling the PORTB

Example: Load RAM location 20H with value 50H.

MyReg SET 0x20 ;set aside the loc 0x20 for MyReg
MOVLW 0x50

MOVWF MyReg ;MyReg = 50H (loc 20H has 50H)

Example: Initialize the Timer0 low and high registers.

MOVLW 0x05 ;WREG = 0BH

MOVWF TMROH ; TMROH = 0x5

MOVLW 0x30 ;WREG = 30H

MOVWF TMROL ; TMROL = 0x30
MULLW Multiply Literal with WREG

Function: Multiply k x WREG

Syntax: MULLW k

This multiplies an unsigned byte k by an unsigned byte in register WREG
and the 16-bit result is placed in registers PRODH and PRODL, where PRODL
has the lower byte and PRODH has the higher byte.

Example:

MOVLW 0Oxb ;WREG = SH

MULLW 0x07 ;PRODL = 35 = 23H, PRODH = 00
Example:

MOVLW OxCA ;WREG = 10

MULLW OxOF ;PRODL = 10 x 15 = 150 = 96H

;PRODH = 00

Example:

MOVLW 0x25

MULLW 0x78 ; PRODL
;because 25H x 78H

58H, PRODH = 11H
1158H

706

Example:
MOVLW D'100Q' ;WREG = 100
MULLW D'200" ;PRCDL = 20H, PRODH = 4EH
; (100 x 200 = 20,000 = 4E20H)

MULWF Multiply WREG with fileReg
Function: Multiply WREG x fileReg and place the result in
PRODH:PROFDL registers
Syntax: MULWF f, a

This multiplies an unsigned byte in WREG by an unsigned byte in the
fileReg register and the result is placed in PRODL and PRODH, where PRODL
has the lower byte and PRODH has the higher byte.

Example:
MyReg SET 0x20 ;MyReg has location of 0x20
MOVLW 0x5
MOVWF MyReg ;iMyReg has 0x5
MOVLW 0Ox7 ;WREG = 0x7
MULWF MyReg ;PRODL = 35 = 23H, PRODH = 00
Example:
MOVLW 0x0A
MOVWF MyReg ;MyReg = 10
MOVLW OxOF ;WREG = 15
MULFW MyReg ;PRODL = 150 = 96H, PRODH = 00
Example:
MOVLW 0x25
MOVWF MyReg ;MyReg = 0x25
MOVLW 0x78 ;WREG 78H
MULWF Myreg ;PRODL = 58H, PRODH = 11H
:{25H x 78H = 1158H)
Example:
MOVLW D'100! ;WREG = 100
MOVWF MyReg ;MyReg = 100
MOVLW D'200' ;WREG = 200
MULWF MyReg ;PRODL = 20H, PRODH = 4EH
; (100 x 200 = 20,000 = 4E20H)
NEGF Negate fileReg
Function: No operation
Syntax: NEGF f, a

This performs 2’s complement on the value stored in fileReg and places it
back in fileReg.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 707

Example:

MyReg SET 0x30

MOVLW 0x98 ;WREG = 0x98

MOVWF MyReg ;MyReg = 0x98

NEGF ;2's complement fileReg

98H 10011000

011C0111 1's complement
+ 1
01101000 Now FileReg = 68H
Example:

MyReqg SET 0x10
MOVLW 0x75 ;WREG = 0x75
MOVWF MyReg iMyReg = 0x75
NEGF ;2’s complement fileReg

75H 01110101

10001010 1‘'s complement
+ 1
10001011 Now FileReg = 7AH

Notice that in this instruction we cannot place the result in the WREG
register.

NOP No Operation
Function: No operation
Syntax: NOP

This performs no operation and execution continues with the next instruc-
tion. It is sometimes used for timing delays to waste clock cyles. This instruction
only updates the PC (program counter) to point to the next instruction following
NOP. In PIC18, this a 2-byte instruction.

POP POP Top of Stack
Function: Pop from the stack
Syntax: POP

This takes out the top of stack (TOS) pointed to by SP (stack pointer) and
discards it. It also decrements SP by 1. After the operation, the top of the stack will
be the value pushed onto the stack previously.

PUSH PUSH Top of the Stack
Function: Push the PC onto the stack
Syntax: PUSH

This copies the program counter (PC) onte the stack and increments SP by
1, which means the previous top of the stack s pushed down.

708

RCALL Relative Call

Function: Transfers control to a subroutine within 1K space
Syntax: RCALL target address

There are two types of CALLs: RCALL and CALL. In RCALL, the target
address is within 1K of the current PC (program counter). To reach the target
address in the 2M ROM space of the PIC18, we must use CALL. In calling a sub-
routine, the PC register (which has the address of the instruction after the RCALL)
is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then the
program counter is loaded with the new address and control is transferred to the
subroutine. At the end of the procedure, when RETURN is executed, PC 1s popped
off the stack, which returns control to the instruction after the RCALL..

Notice that RCALL is a 2-byte instruction, in which 5 bits are used for the
opcode and the remaining 11 bits are used for the target subroutine address. An 11-
bit address limits the range to —1024 to +1023. See the CALL instruction for dis-
cussion of the target address being anywhere in the 2M ROM space of the PICIS.
Notice that RCALL is a 2-byte instruction while CALL is a 4-byte instruction.
Also notice that the RCALL does not have the option of context saving, as CALL

has.

RESET Reset (by software)
Function: Reset by software
Syntax: RESET

This instruction is used to reset the PIC18 by way of software. After
execution of this instruction, all the registers and flags are forced to their reset con-
dition. The reset condition is created by activating the hardware pin MCLR. In
other words, the RESET instruction is the software version of the MCLR pin.

RETFIE Return from Interrupt Exit
Function: Return from interrupt
Syntax: RETFIE s

This is used at the end of an interrupt service routine (interrupt handler).
The top of the stack is popped into the program counter and program execution
continues at this new address. After popping the top of the stack into the program
counter {PC), the stack pointer (SP) is decremented by 1.

Notice that while the RETURN instruction is used at the end of a subrou-
tine associated with the CALL and RCALL instructions, RETFIE must be used for
the interrupt service routines (ISRs).

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 709

RETLW Return with Literal in WREG

Function: The k value is placed in WREG and the top of the stack is
the placed in PC (program counter)
Syntax: RETLW k

After execution of this instruction, the k value is loaded into WREG and
the top of the stack is popped into the program counter (PC). After popping the
top of the stack into the program counter, the stack pointer (SP) is decremented by
1. This instruction is used for the implementation of a look-up table. See Section
6.3 in Chapter 6.

RETURN Return
Function: Return from subroutine
Syntax: RETURN 8 ;wheres=0ors=1

This instruction is used to return from a subroutine previously entered by
instructions CALL or RCALL. The top of the stack is popped into the program
counter (PC) and program execution continues at this new address. After popping
the top of the stack into the program counter, the stack pointer (SP) is decrement-
ed by 1. For the case of “RETURN s” where s = 1, the RETURN will also
restore the context registers. See the CALL instruction for the case of s = 1. Notice
that “RETURN 1” cannot be used for subroutines associated with RCALL.

RLCF Rotate Left Through Carry the fileReg

Function: Rotate fileReg left through carry
Syntax: RICF f, d,a

This rotates the bits of a
fileReg register left. The bits rotated
out of fileReg are rotated into C, and L

CY

the C bit is rotated into the opposite MSB «——LSB |
end of the fileReg register.
Example:
MyReg SET 0x30 ;set aside loc 30H for MyReg
BCF STATUS,C ;C = 0
MOVLW 0x95 ;WREG = S9SH
MOVWF MyReg iMyReg = 9%9H = 10011001
RLCF MyReg,F ;now MyReg = 00110010 and
;€ =1
RLCF MyReqg,F ;now MyReg = 01100101 and
;:C =0

710

RLNCF Rotate left not through Carry

Function: Rotate left the fileReg
Syntax: RLNCF £, d, a

This rotates the bits of a fileReg
register left. The bits rotated out of
fileReg are rotated back into fileReg at
the opposite end.

MSB «——LSB J

Example:
MyReg SET 0x20 ;set aside loc 20 for MyReg
MOVLW 0x69 ;WREG = 01101001
MOVWF MyReg ;MyReg = 69H = 01101001
RLNCF MyReg,F ;now MyReg = 11010010
RLNCF MyReg,F ;now MyReg = 10100101
RLNCF MyReg,F ;now MyReg = 01001011
RLNCF MyReg,F ;now MyReg = 10010110

Notice that after four rotations, the upper and lower nibbles are swapped.

RRCF Rotate Right through Carry

Function: Rotate fileReg right through carry
Syntax: RRCF {,d,a

This rotates the bits of a
fileReg register right. The bits rotated
out of the register are rotated into C, MSB —LSB |— CY _.
and the C bit is rotated into the
opposite end of the register.

Example:
MyReg SET 0x20 ;set aside loc 20 for MyReg
BSF STATUS5,C ;C = 1

MOVLW 0x99 ;WREG = 10011001
MOVWF MyReg ;MyReg = 99H = 10011001
RRCF MyReg,F ;now MyReg = 11001100, C = 1
RRCF MyReqg,F ;now MyReg = 11100110, C = 0
RRNCF Rotate Right not through Carry
Function: Rotate fileReg right
Syntax: RRNCF f,d, a

This rotates the bits of a fileReg reg-
ister right. The bits rotated out of the register L

are rotated back into fileReg at the opposite

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

711

Example:
MyReg SET 0x20 ;set aside loc 20H for MyReg

MOVLW 0Ox66 ;WREG = 66H = 01100110
MOVWF MyReg ;MyReg = 66H = 01100110
RRNCF MyReg,F ;now MyReg = 00110011
RRNCF MyReg,F ;now MyReg = 10011001
RRNCF MyReg,F ;now MyReg = 11001100
RRNCF MyReg,F ;now MyReg = 01100110

Example: We can use this instruction to swap the upper and lower nibbles.
MyReg SET 0x20 ;set aside loc 20H for MyReg

MOVLW 0x36 ;WREG = 36H = 00110110
MOVWF MyReg ;MyReg = 36H = 00110110
RRNCF MyReg,F ;now MyReg = 00011011
RRNCF MyReg,F ;now MyReg = 10001101
RRNCF MyReg,F ;now MyReg = 11000110

RRNCF MyReg,F ;now MyReg 01100011 = 63H

SETF Set fileReg
Function: Set
Syntax: SETF f a

This instruction sets the entire byte in fileReg to HIGH. All bits of the reg-
ister are set to 1.

Examples:
SETF MyReg ;MyReg = 11111111
SETF TRISB ;TRISB = FFH, (makes PCRTB input)
SETF PORTC ;PORTC = 1111 1111

Notice that in this instruction, the result can be placed in fileReg only and
there is no option for WREG to be used as the destination for the result.

SLEEP Enter Sleep mode
Function: Put the CPU into sleep mode
Syntax: SLEEP

This instruction stops the oscillator and puts the CPU into sleep mode. It
also resets the Watchdog Timer (WDT). The WDT is used mainly with the SLEEP
instruction. Upon execution of the SLEEP instruction, the entire microcontroller
goes into sleep mode by shutting down the main oscillator and by stopping the
Program Counter from fetching the next instruction after SLEEP. There are two
ways to get out of sleep mode: (a) an external event via hardware interrupt, (b) the
internal WDT interrupt. Upon wake-up from a WDT interrupt, the microcontroller
resumes operation by executing the next instruction after SLEEP.

Check the Microchip Corp. website for application notes on WDT.

712

SUBFWB Subtract fileReg from WREG with borrow

Function: WREG — fileReg — #borrow ;#borrow is inverted carry
Syntax: SUBFWB f,d, a

This subtracts fileReg and the Carry (borrow) flag from WREG and puts
the result in WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed
by the internal hardware of the CPU are as follows:

Take the 2's complement of the fileReg byte.

Add this to register WREG.

Add the inverted Carry (borrow) flag to the result.

Ignore the Carry.

Examine the N (negative) flag for positive or negative result.

[V TN N IS I N I

Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
BEF STATUS,C ;make Carry = 1
MOVLW 0x45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW 0x23
SUBWF MyReg ;WREG = 45H - 23H - 0 = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2's comp + 1101 1101
Inverted carry + 0

+22H 0010 0010
Because D7 (the N flag} 1is 0, the result is
positive.

This instruction sets the negative flag according to the following:
N
WREG > (fileReg + #C) 0 the result is positive
WREG = (fileReg + #() 0 the result is 0
WREG < (fileReg + #C) i the result is negative and in 2's comp

SUBLW Subtract WREG from Literal value

Function; Subtract WREG from literal value k (WREG = k — WREG)
Syntax: SUBLW k

This subtracts the WREG value from the literal value k and puts the result
in WREG. The steps for subtraction performed by the internal hardware of the
CPU are as follows: ‘

Take the 2's complement of the WREG value.

Add it to literal value k.

Ignore the Carry.

Examine the N (negative) flag for positive or negative result.

B W=

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 713

MOVLW 0x23 ;WREG 23H

SUBLW 0x45 ;:WREG = 45H - 23H = 22H
45H 0100 0101 0100 0101
-23H 0010 0011 2’'s comp +1101 1101
+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

N
Literal value k > WREG 0 the result is positive
Literal value k = WREG 0 the result 1s 0
Literal value < WREG 1 the result is negative and in 2's comp

Example:
MOVLW 0x98 ;WREG 98H
SUBLW 0x66 ;WREG = 66H - 98H = CEH
66H 0110 0110 0110 0110
-98H 1001 1000 2's comp +0110 1000
CEH 1100 1110

Because D7 (the N flag) is 1, the result is
negative and in 2‘'s comp.

SUBWF Subtract WREG from fileReg
Function: Subtract WREG from fileReg (Dest = fileReg — WREG)
Syntax: SUBWF f, d, a

This subtracts the WREG value from the fileReg value and puts the result
in either WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed by
the internal hardware of the CPU are as follows:

1. Take the 2's complement of the WREG byte.
2. Add this to the fileReg register.
3. Ignore the carry.
4, Examine the N (negative) flag for positive or negative result.
Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
MOVLW 0x45 ;WREG 45H
MOVWEF MyReg ;MYReg = 45H
MOVLW 0x23 ;WREG = 23H

SUBWF MyReg,F ;MyReg = 45H - 23H = 22H

714

45H 0100 0101 0100 0101

-23H 0010 0011 2's comp +1101 1101

+22H 0010 0010

Because D7 (the N flag) is 0, the result 1is
positive.

This instruction sets the negative flag according to the following:
N
fileReg > WREG 0 the result is positive
fileReg = WREG 0 the result 1s 0
fileReg < WREG 1 the result is negative and in 2's comp

SUBWFB Subtract WREG from fileReg with borrow

Function: Dest = fileReg - WREG — #borrow ;#borrow is inverted carry
Syntax: SUBWFBT, d,a

This subtracts the WREG value and the inverted borrow (carry) flag from
the fileReg value and puts the result in WREG (if d = 0), or fileReg (if d = 1). The
steps for subtraction performed by the internal hardware of the CPU are as fol-

lows:
1. Take the 2's complement of WREG.
2. Add this to fileReg.
3. Add the inverted Carry flag to the result.
4. lgnore the carry.
5. Examine the N (negative) flag for positive or negative result.
Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
BSF STATUS, C ;C =1
MOVLW 0x45 ; WREG 45H
MOVWEF MyReg ;MYReg = 45H
MOVLW 0x23 ;WREG = 23H

SUBWFB MyReg,F ;MyReg = 45H - 23H - 0 = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2's comp +1101 1101
Inverted carry + 0
+22H 0010 0010
Because D7 (the N flag) i1s 0, the result is
positive.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 715

This instruction sets the negative flag according to the following:

N
fileReg > (WREG +#C) 0 the result is positive
fileReg = (WREG + #(C) 0 the result is 0
fileReg < (WREG + #() i the result is negative and in 2's comp
SWAPF Swap Nibbles in fileReg
Function: Swap nibbles within fileReg
Syntax: SAWPF T, d, a

The SWAPF instruction interchanges the lower nibble (D0-D3) with the
upper nibble (D4-D7) inside fileReg. The result is placed in WREG (d = 0) or
fileReg (d = 1).

Example:
MyReg SET 0X20 ;set aside loc 20H for MyRey
MOVLW OxS59H ;W = 59H (0101 1001 in binary)
MOVWF MyReg ; MyReg 59H {0101 1001)
SWAPF MyReg,F ;MyReg 95H (1001 0101)

TBLRD Table Read
Function: Read a byte from ROM to the TABLAT register
Syntax: TBLRD *
TBLRD *+
TBLRD *-
TBLRD +*

This instruction moves (copies) a byte of data located in program (code)
ROM into the TableLatch (TABLAT) register. This allows us to put strings of data,
such as look-up table elements, in the code space and read them into the CPU. The
address of the desired byte in the program space (on-chip ROM) is held by the
TBLPTR register. Table A-6 shows the auto-increment feature of the TBLRD
instruction.

Table A-6: PIC18 Table Read Instructions

Instruction Function

TBLRD* Table Read After read, TBLPTR stays the same
TBLRD*+ Table Read with post-increment (Read and increment TBLPTR)
TBLRD*- Table Read with post-decrement (Read and decrement TBLPTR)
TBLRD+* Table Read with pre-increment (increment TBLPTR and read)

Note: A byte of data is read into the TABLAT register from code space pointed to by
TBLPTR.

Example: Assume that an ASCII character string is stored in the on-chip
ROM program memory starting at address 500H. Write a program to bring each
character into the CPU and send it to PORTB.

ORG 0O000H ;burn into ROM starting at 0

716

MOVLW LOW(MESSAGE) ;WREG = (00 low-byte addr.

MOVWF TBLPTRL ;look-up table low-byte addr
MOVLW HIGH(MESSAGE} ;WREG = 05 = high-byte addr
MOVWF TBLPTRH ;look-up table high-byte addr
CLRF TBLPTRU ;clear upper 5 bits
B8 TBLRD* + ;read the table,then increment TBLPTR
MOVF TABLAT,W ;copy to WREG (Z = 1 if null)
BZ EXIT ;exit 1f end of string
MOVWF PORTB ;copy WREG to PORTB
BRA B8
EXIT GOTO EXIT
R e message
ORG 0x500 ;data burned starting at 0x500
ORG 0x500
MESSAGE DB "The earth is but one country and "
DB "mankind its c<itizens","Baha'u'llah",0
END

In the program above, the TBLPTR holds the address of the desired byte.
After the execution of the TBLRD*+ instruction, register TABLAT has the char-
acter. Notice that TBLPTR is incremented automatically to point to the next char-
acter in the MRESSAGE table.

TBLWT Table Write
Function: Write to Flash a block of data
Syntax: TBLWT*
TBLWT*+
TBLWT*-
TBLWT+*

This instruction writes a block of data to the program (code) space assum-
ing that the on-chip program ROM is of Flash type. The address of the desired
location in Flash ROM is held by the TBLPTR register. The process of writing to
Flash ROM using the TBLWT instruction is discussed in Section 14.3 of Chapter

14.

TSTFSZ Test fileReg, Skip if Zero
Function: Test fileReg for zero value and skip if it is zero
Syntax: TSTFSZ f, a

This instruction tests the entire contents of fileReg for value zero and skips
the next instruction if fileReg has zero in it.

Example: Test PORTB for zero continuously.
SETF TRISB ;make PORTB an input
CLRF TRISD ;make PORTD an output

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 717

BACK TSTFSZ PORTB
BRA BACK
MOVFF PORTB, PORTD

Example: Toggle PORTB 250 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETF TRISB ;PORTB as output
MOVLW D'250' ;WREG = 250
MOVWF COUNTER ;COUNTER = 250
MOVLW 0Ox55 ;WREG = 55H

MOVWF PORTB

BACK COMF PORTB,F ;toggle PORTB
DECF COUNTER,F ;decrement COUNTER
TSTFSZ CQUNTER ;test counter for 0O

BRA BACK ;keep doing it
XORLW Ex-Or Literal with WREG
Function: Logical exclusive-OR Literal k and WREG
Syntax: XORLW k
This performs a logical exclusive-OR on the [A Bl AXORB
Literal value and WREG operands, bit by bit, storing |0 0)
the result in WREG. 0 1 1
1 0 1
Example: 1 1 0
MOVLW 0x39 ;WREG = 3SH
XORLW 0x09 ;WREG = 39H ORed with 09

;nniow, WREG = 30H
39H 0011 1001
09H Q000 1001

30 0011 00040
Example:
MOVLW 0x32 ;WREG = 32H
XORLW 0x50 ; (now, WREG = 62H)

32H 0011 0010
50H 0101 00040
62H 0110 0010

XORWF Ex-Or WREG with fileReg
Function: Logical exclusive-OR fileReg and WREG
Syntax: XORWF fd a

This performs a logical exclusive-OR on the operands, bit by bit, storing

718

the result in the destination. The destination can be WREG (d = 0), or fileReg

(d=1).

Example:
MyReg SET 0x20 ;set aside loc 20h for MyReg
MOVLW 0x39 ;WREG = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x09 ;WREG = O0OSH
XORWF MyReg,F ;MyReg = 39H ORed with 09

;MyReg = 30H

38H 0011 1001
09H 0000 1001
30 0011 0400

Example:
MyReg SET 0x15 ;set aside loc 15 for MyReg
MOVLW 0x32 ;WREG = 32H
MOVWF MyReg ;MyReg = 32H
MOVLW 0x50 ;WREG = 50H
XORWF MyReg,F ;now W = 62H
32H 0011 0010
50H 0101 0000
62H 0110 0010.
We can place the result in WREG.

Exampile:
MyReg SET 0x15 ;set aside loc 15 for MyReg
MOVLW 0x44 ;WREG = 44H
MOVWEF MyReg iMyReg = 44H
MOVLW 0x67 ;WREG = 67H
XORWF MyReg ;now W = 23H, and MyReg = 44H
44H 01060 0100
67H_ 0110 0111
23H 0010 0011

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION 719

APPENDIX B

BASICS OF
WIRE WRAPPING

OVERVIEW

This appendix shows the basics of wire wrapping.

721

BASICS OF WIRE WRAPPING

Note: For this tutorial appendix, you will need the following:
Wire-wrapping tool (Radio Shack part number 276-1570)

30-gauge (30-AWG) wire for wire wrapping

(Thanks to Shannon Looper and Greg Boyle for their assistance on this section.)

The following describes the basics of wire wrapping:

. There are several different types of wire-wrap tools available. The best one is

available from Radio Shack for less than $10. The part number for the Radio
Shack model is 276-1570. This tool combines the wrap and unwrap functions
in the same end of the tool and includes a separate stripper. We found this to
be much easier to use than the tools that combined all these features on one
two-ended shaft. There are also wire-wrap guns, which are, of course, more
expensive.

Wire-wrapping wire is available prestripped in various lengths or in bulk on a
spool. The prestripped wire is usually more expensive and you are restricted to
the different wire lengths you can afford to buy. Bulk wire can be cut to any
length you wish, which allows each wire to be custom fit.

Serveral different types of wire-wrap boards are available. These are usually
called perfboards or wire-wrap boards. These types of boards are sold at many
electronics stores (such as Radio Shack). The best type of board has plating
around the holes on the bottom of the board. These boards are better because
the sockets and pins can be soldered to the board, which makes the circuit more
mechanically stable.

Choose a board that is large enough to accommodate all the parts in your
design with room to spare so that the wiring does not become too cluttered. If
you wish to expand your project in the future, you should be sure to include
enough room on the original board for the complete circuit. Also, if possible,
the layout of the IC on the board needs to be such that signals go from left to
right just like the schematics.

To make the wiring easier and to keep pressure off the pins, install one stand-
off on each corner of the board. You may also wish to put standoffs on the top
of the board to add stability when the board is on its back.

For power hook-up, use some type of standard binding post. Solder a few sin-
gle wire-wrap pins to each power post to make circuit connections (to at least
one pin for each IC in the circuit).

To further reduce problems with power, each IC must have its own connection
to the main power of the board. If your perfboard does not have built-in power
buses, run a separate power and ground wire from each IC to the main power.
In other words, DO NOT daisy chain (chip-to-chip connection is called daisy
chain) power connections, as each connection down the line will have more
wire and more resistance to get power through. See Figure B-1. However,
daisy chaining is acceptable for other connections such as data, address, and
control buses.

You must use wire-wrap sockets. These sockets have long square pins whose
edges will cut into the wire as it is wrapped around the pin.

722

9. Wire wrapping will not work on round legs. If you need to wrap to compo-
nents, such as capacitors, that have round legs, you must aiso solder these con-
nections. The best way to connect single components is to install individual
wire-wrap pins into the board and then solder the components to the pins. An
alternate method is to use an empty IC socket to hold small components such
as resistors and wrap them to the socket.

10. The wire should be stripped about 1 inch. This will allow 7 to 10 turns for each
connection. The first turn or turn-and-a-half should be insulated. This prevents
stripped wire from coming in contact with other pins. This can be accom-
plished by inserting the wire as far as it will go into the tool before making the
connection.

11. Try to keep wire lengths to a minimum. This prevents the circuit from looking
like a bird nest. Be neat and use color coding as much as possible. Use only
red wires for V¢ and black wires for ground connections. Also use different

colors for data, address, and control signal connections. These suggestions will
make troubleshooting much easier.

12. Tt 1s standard practice to connect all power lines first and check them for con-
tinuity. This will eliminate trouble later on,

13. It's also a good idea to mark the pin orientation on the bottom of the board.
Plastic templates are available with pin numbers preprinted on them specifi-
cally for this purpose, or you can make your own from paper. Forgetting to
reverse pin order when looking at the bottom of the board is a very common
mistake when wire wrapping circuits,

14. To prevent damage to your circuit, place a diode (such as IN5338) in reverse
bias across the power supply. If the power gets hooked up backwards, the
diode will be forward biased and will act as a short, keeping the reversed volt-
age from your circuit.

15. In digital circuits, there can be a problem with current demand on the power
supply. To filter the noise on the power supply, a 100 UF electrolytic capacitor
and a 0.1 uF monolithic capacitor are connected from V- to ground, in par-

allel with each other, at the entry point of the power supply to the board. These
two together will filter both the high- and the low-frequency noises. Instead of
using two capacitors in parallel, you can use a single 20100 UF tantalum
capacitor. Remember that the long lead is the positive one.

16. To filter the transient current, use a 0.1 uF monolithic capacitor for each IC.
Place the 0.1 pF monolithic capacitor between V- and ground of each IC.

Make sure the leads are as short as possible.

IC #1 IC #2 IC#3 IC #4

Figure B-1. Daisy Chain Connection (not recommended for power lines)

APPENDIX B: BASICS OF WIRE WRAPPING 723

APPENDIX C

IC TECHNOLOGY AND
SYSTEM DESIGN ISSUES

OVERVIEW

This appendix provides an overview of IC technology and PIC18
interfacing. In addition, we look at the microcontroller-based system as a
whole and examine some general issues in system design. ST

First, in Section C.1, we provide an overview of IC technology
Then, in Section C.2, the internal details of PIC18 ¥/O ports and interfac- -
ing are discussed. Section C.3 examines system design issues. :

725

C.1: OVERVIEW OF IC TECHNOLOGY

In this section we examine IC technology and discuss some major devel-
opments in advanced logic families. Because this is an overview, it is assumed that
the reader is familiar with logic families on the level presented in basic digital
electronics books. ‘

Transistors

The transistor was invented in 1947 by three scientists at Bell Laboratory.
In the 1950s, transistors replaced vacuum tubes in many electronics systems,
including computers. It was not until 1959 that the first integrated circuit was suc-
cessfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the
invention of the IC, the use of transistors, along with other discrete components
such as capacitors and resistors, was common in computer design. Early transis-
tors were made of germanium, which was later abandoned in favor of silicon. This
was because the slightest rise in temperature resulted in massive current flows in
germanium-based transistors. In semiconductor terms, it is because the band gap
of germanium is much smaller than that of silicon, resulting in a massive flow of
electrons from the valence band to the conduction band when the temperature rises
even slightly. By the late 1960s and early 1970s, the use of the silicon-based 1C
was widespread in mainframes and minicomputers. Transistors and ICs at first
were based on P-type materials. Later on, because the speed of electrons is much
higher (about two-and-a-haif times) than the speed of holes, N-type devices
replaced P-type devices. By the mid-1970s, NPN and NMOS transistors had
replaced the slower PNP and PMOS transistors in every sector of the electronics
industry, including in the design of microprocessors and computers. Since the
early 1980s, CMOS (complementary MOS) has become the dominant technology
of IC design. Next we provide an overview of differences between MOS and bipo-
lar transistors. See Figure C-1.

¢ D
c[N l_l
B| P =]
£ P G I
N E
N s
Bipolar NPN Transistor NMOS Transistor

Figure C-1. Bipolar vs. MOS Transistors

726

MOS vs. bipolar transistors

There are two types of transistors: bipolar and MOS (metal-oxide semi-
conductor). Both have three leads. In bipolar transistors, the three leads are
referred to as the emitter, base, and collector, while in MOS transistors they are
named source, gate, and drain. In bipolar transistors, the carrier flows from the
emitter to the collector, and the base is used as a flow controller. In MOS transis-
tors, the carrier flows from the source to the drain, and the gate 1s used as a flow
controller. In NPN-type bipolar transistors, the electron carrier leaving the emitter
must overcome two voltage barriers before it reaches the collector (see Figure C-
1). One is the N-P junction of the emitter-base and the other is the P-N junction of
the base-collector. The voltage barrier of the base-collector is the most difficult
one for the electrons to overcome (because it is reverse-biased) and it causes the
most power dissipation. This led to the design of the unipolar type transistor called
MOS. In N-channel MOS transistors, the electrons leave the source and reach the
drain without going through any voltage barrier. The absence of any voltage bar-
rier in the path of the carrier is one reason why MOS dissipates much less power
than bipolar transistors. The low power dissipation of MOS allows millions of
transistors to fit on a single [C chip. In today's technology, putting 10 million tran-
sistors into an IC is common, and it is all because of MOS technology. Without the
MOS transistor, the advent of desktop personal computers would not have been
possible, at least not so soon. The bipolar transistors in both the mainframes and
minicomputers of the 1960s and 1970s were bulky and required expensive cooling
systems and large rooms. MOS transistors do have one major drawback: They are
slower than bipolar transistors. This is due partly to the gate capacitance of the
MOS transistor. For a MOS to be turned on, the input capacitor of the gate takes
time to charge up to the turn-on (threshold) voltage, leading to a longer propaga-
tion delay.

Overview of logic families

Logic families are judged according to (1) speed, (2) power dissipation, (3)
noise immunity, (4) input/output interface compatibility, and (5) cost. Desirable
qualities are high speed, low power dissipation, and high noise immunity (because
it prevents the occurrence of false logic signals during switching transition). In
interfacing logic families, the more inputs that can be driven by a single output,
the better. This means that high-driving-capability outputs are desired. This, plus
the fact that the input and output voltage levels of MOS and bipolar transistors are
not compatible mean that one must be concerned with the ability of one logic fam-
ily to drive the other one. In terms of the cost of a given logic family, it is high dur-
ing the early years of its introduction but it declines as production and use rise.

The case of inverters

As an example of logic gates, we look at a simple inverter. In a one-tran-
sistor inverter, the transistor plays the role of a switch, and R is the pull-up resis-
tor. See Figure C-2. For this inverter to work most effectively in digital circuits,
however, the R value must be high when the transistor is “on” to limit the current
flow from V¢ to ground in order to have low power dissipation (P = VI, where V

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 727

= 5 V). In other words, the lower the I, the lower the power dissipation. On the
other hand, when the transistor is “off’, R must be a small value to limit the volt-
age drop across R, thereby making sure that Vyr is close to V. This is a con-

tradictory demand on R. This is one reason that logic gate designers use active
components (transistors) instead of passive components (resistors) to implement
the pull-up resistor R. ‘

Ve Vee Ve
Re Rc¢ Rc
Qut Low High
n High Low
Rc must be a Re must be a
very high value. very low value.

sure C-2. One-Transistor Inverter with Pull-up Resistor

The case of a TTL inverter with totem-pole output is shown in Figure C-3.
In Figure C-3, Q3 plays the role of a pull-up resistor.

Low ‘) Q1

iput

Vee Vee
é Vce %

High &
Q2 High Low

Input On
Qut Out

On

Off

gure C-3. TTL Inverter with Totem-Pole Output

CMOS inverter

In the case of CMOS-based logic gates, PMOS and NMOS are used to con-
struct a CMOS (complementary MOS) inverter as shown in Figure C-4. In CMOS
inverters, when the PMOS transistor is off, it provides a very high impedance path,
making leakage current almost zero (about 10 nA); when the PMOS is on, it pro-
vides a low resistance on the path of Vpp, to load. Because the speed of the hole is

slower than that of the electron, the PMOS transistor is wider to compensate for
this disparity; therefore, PMOS transistors take more space than NMOS transistors
in the CMOS gates. At the end of this section we will see an open-collector gate
in which the pull-up resistor is provided externally, thereby allowing system
designers to choose the value of the pull-up resistor.

728

Input —
npu5V

uon

.

(X1

[]

Vgs

(YL, <

PMOS

T Output

ov

NMOS

ov

VDD
ilon,! ‘J
-
L]

Input —

PMOS

5V Output

NMOS

Figure C-4. CMOS Inverter

Input/output characteristics of some logic families

1n 1968 the first logic family made of bipolar transistors was marketed. It
was commonly referred to as the standard TTL (transistor-transistor logic) family.
The first MOS-based logic family, the CD4000/74C series, was marketed in 1970,
The addition of the Schottky diode to the base-collector of bipolar transistors in
the early 1970s gave rise to the S family. The Schottky diode shortens the propa-
gation delay of the TTL family by preventing the collector from going into what
is called deep saturation. Table C-1 lists major characteristics of some logic fami-
lies. In Table C-1, note that as the CMOS circuit's operating frequency rises, the

power dissipation also increases. This is not the case for bipolar-based TTL.

Table C-1: Characteristics of Some Logic Families

Characteristic STD TTL. LSTTL ALSTTL HCMOS
Vee 5V 5V 5V 5V

Vi 20V 20V 20V 315V
Vi 08V 0.8V 0.8V 1.1V
Vou 24V 27V 27V 37V
VoL 04V 05V 04V 04V

I -1.6 mA 036 mA -02mA -1 uA
I 40 nA 20 pA 20 uA 1 pA

Tot, 16 mA 8 mA 4 mA 4 mA
Tog -400 pnA -400 pA ~400 pA 4 mA
Propagation delay 10 ns 9.5 ns 4 ns 9 ns
Static power dissipation (f=0) 10 mW 2 mW 1 mW 0.0025 nW
Dynamic power dissipation

at =100 kHz 10 mW 2 mW 1 mW 0.17 mW

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

729

History of logic families

Early logic families and microprocessors required both positive and nega-
tive power voltages. In the mid-1970s, 5 V V- became standard. In the late

1970s, advances in IC technology allowed combining the speed and drive of the S
family with the lower power of LS to form a new logic family called FAST
(Fairchild Advanced Schottky TTL). In 1985, AC/ACT (Advanced CMOS
Technology), a much higher speed version of HCMOS, was introduced. With the
introduction of FCT (Fast CMOS Technology) in 1986, the speed gap between
CMOS and TTL at last was closed. Because FCT is the CMOS version of FAST,
it has the low power consumption of CMOS but the speed is comparable with
TTL. Table C-2 provides an overview of logic families up to FCT.

Table C-2: Logic Family Overview

Year Static Supply High/Low Family
Product Introduced Speed (ns) Current (mA) Drive (mA)
Std TTL 1968 40 30 -2/32
CD4K/74C 1970 70 0.3 -0.48/6.4
LS/S 1971 18 54 -15/24
HC/HCT 1977 25 0.08 —6/-6
FAST 1978 6.5 90 -15/64
AS 1980 6.2 90 -15/64
ALS 1980 10 27 -15/64
AC/ACT 1985 10 0.08 -24/24
FCT 1986 6.5 1.5 -15/64

Reprinted by permission of Electronic Design Magazine, ¢. 1991.

Recent advances in logic families

As the speed of high-performance microprocessors reached 25 MHz, it
shortened the CPU’s cycle time, leaving less time for the path delay. Designers
normally allocate no more than 25% of a CPU's cycle time budget to path delay.
Following this rule means that there must be a corresponding decline in the prop-
agation delay of logic families used in the address and data path as the system fre-
quency is increased. In recent years, many semiconductor manufacturers have
responded to this need by providing logic families that have high speed, low noise,
and high drive 1/0. Table C-3 provides the characteristics of high-performance
logic families introduced in recent years. ACQ/ACTQ are the second-generation
advanced CMOS (ACMOS) with much lower noise. While ACQ has the CMOS
input level, ACTQ is equipped with TTL-level input. The FCTx and FCTx-T are
second-generation FCT with much higher speed. The “x” in the FCTx and FCTx-
T refers to various speed grades, such as A, B, and C, where A means low speed
and C means high speed. For designers who are well versed in using the FAST
logic family, FASTr is an ideal choice because it is faster than FAST, has higher
driving capability (Ig;, 1oy, and produces much lower noise than FAST. At the

time of this writing, next to ECL and gallium arsenide logic gates, FASTr is the
fastest logic family in the market (with the 5 V V), but the power consumption

is high relative to other logic families, as shown in Table C-3. The combining of

730

high-speed bipolar TTL and the low power consumption of CMOS has given birth
to what is called BICMOS. Although BICMOS seems to be the future trend in IC
design, at this time it is expensive due to extra steps required in BICMOS IC fab-
rication, but in some cases there is no other choice. (For example, Intel's Pentium
microprocessor, a BICMOS product, had to use high-speed bipolar transistors to
speed up some of the internal functions.) Table C-3 provides advanced logic char-
acteristics. The “x” 1s for different speeds designated as A, B, and C. A is the slow-
est one while C is the fastest one. The above data is for the 74244 buffer.

Table C-3: Advanced Logic General Characteristics

Number Tech Static

Family Year Suppliers Base /O Level Speed (ns) Current Igu/Iop

ACQ 1989 2 CMOS CMOS/CMOS 6.0 80 pA 24724 mA
ACTQ 1989 2 CMOS TTL/CMOS 7.5 80 nA -24/24 mA
FCTx 1987 3 CMOS TTL/CMOS 4.148 1.5mA -15/64 mA
FCTxT 1990 2 CMOS TTL/TTL 4148 1.5mA -15/64 mA
FASTr 1990 1 Bipolar TTL/TTL 3.9 50 mA -15/64 mA
BCT 1987 2 BICMOS TTL/TTL 5.5 10 mA -15/64 mA

Reprinted by permission of Electronic Design Magazine, ¢. 1991,

Since the late 70s, the use of a +5 V power supply has become standard in
all microprocessors and microcontrollers. To reduce power consumption, 3.3 V
Ve 18 being embraced by many designers. The lowering of V¢ to 3.3 V has two

major advantages: (1) it lowers the

power consumption, prolonging Vee
the life of the battery in systems é é External
using a battery, and (2) it allows a pull-up
further reduction of line size Input resistor
(design rule) to submicron dimen- Output

sions. This reduction results in put-
ting more transistors in a given die
size. As fabrication processes
improve, the decline in the line size
is reaching submicron level and
transistor densities are approaching AV4
1 billion transistors.

Figure C-5. Open Collector

External

pull-up
resistor

Open-collector and open-drain
gates

To allow multiple outputs to be connect-
ed together, we use open-collector logic gates.
In such cases, an external resistor will serve as ——l
load. This is shown in Figures C-5 and C-6. :|

Figure C-6. Open Drain

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 731

SECTION C.2: PIC18 /O PORT STRUCTURE AND INTERFACING

In interfacing the PIC18 microcontroller with other IC chips or devices,
fan-out is the most important issue. To understand the PIC18 fan-out we must first
understand the port structure of the PIC18. This section provides a detailed dis-
cussion of the PIC18 port structure and its fan-out. It is very critical that we under-
stand the I/O port structure of the PIC18 lest we damage it while trying to inter-
face it with an external device.

IC fan-out

When connecting 1C chips together, we need to find out how many input
pins can be driven by a single output pin. This is a very important issue and
involves the discussion of what is called IC fan-out. The IC fan-out must be
addressed for both logic “0” and logic “1” outputs. See Example C-1. Fan-out for
logic LOW and fan-out for logic HIGH are defined as follows:

Tor lon

fan-out {of LOW) = fan-out (of HIGH) =

7L i

Of the above two values, the lower number is used to ensure the proper
noise margin. Figure C-7 shows the sinking and sourcing of current when ICs are
connected together.

HIGH ‘) ‘)) LOW * * +

i TN

I|L| IIL| |IL| i IIH|} ||H|} |1H|)

‘on” “Off
loL =2 I lon = Z hn

47 loL VoL = Ro (transistor) x Io,

A

Figure C-7. Current Sinking and Sourcing in TTL

Notice that in Figure C-7, as the number of input pins connected to a sin-
gle output increases, Iy rises, which causes Vi to rise. If this continues, the rise

of V5 makes the noise margin smaller, and this results in the occurrence of false
logic due to the slightest noise.

732

Example C-1

Solution:

fan-out (LOW) =

fan-out (HIGH) =

Find how many unit loads (UL) can be driven by the output of the LS logic family.

IOL 8 mA
L - Tema °
Ion _ 400pA _

The unit load is defined as I;; = 1.6 mA and Ly = 40 pA. Table C-1 shows Iy = 400
uA and I5; = 8 mA for the LS family. Therefore, we have

This means that the fan-out is 5. In other words, the LS output must not be connected
to more than 5 inputs with unit load characteristics.

741.S244 and 74LS245 buffers/drivers

In cases where the receiver current requirements exceed the driver’s capa-
bility, we must use buffers/drivers such as the 7415245 and 74LS244. Figure C-8
shows the internal gates for the 74L.8244 and 741.8245. The 74LS245 1s used for
bidirectional data buses, and the 74L.S244 is used for unidirectional address buses.

o] Q
Vee GND
| o —j Al N B1 |—
Ve 1G —|az u 82 l—
1A-1 N 1Y-1 — A3 B3 —
1A-2 V,\L— 1v-2 M il
|,[—_l A5 BS —
1A-3 N 1Y-3 . B6 —
1A-4 I\L‘ 1Y-4 —| A7 B? [—
11 —| A8 B8 —
2A-1 2Y-1
. DIR G
2A-2 T~ [2Y-2 Direction Enable
control
2A-3 :E— 2Y-3 :
Pg Function Table
2A-4 N 2Y-4 o
__ | Direction control
] Enable G DIR QOperation
_ L L B Data to A Bus
GND 1G L H A Data to B Bus
| H X Isolation

Figure C-8 (a). 741.8244 Octal Buffer

Figure C-8 (b). 7418245 Bidirectional Buffer

(Reprinted by permission of Texas Instruments, Copyright (Reprinted by permission of Texas Instruments, Copyright

Texas Instruments, 1988)

Texas Instruments, 1988)

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

733

Tri-state buffer

Notice that the
7418244 is simply 8 tri- In out
state buffers in a single [{a) (b)
chip. As shown in Figure Tri-state

i control -
C-9 a tri-state buffer has a (active high)

single input, a single out-
put, and the enable control
input. By activating the

enable, data at the input is H H
transferred to the output. () H
The enable can be an

active-LOW or an active- H;gh |mpedence
HIGH. Notice that the {open-circuit)
enable input for the
74LS244 is an active-LOW Figure C-9. Tri-State Buffer
whereas the enable input

pin for Figure C-9 is active-HIGH.

74L.S245 and 74L.S244 fan-out

[t must be noted that the output of the 741.8245 and 7415244 can sink and
source a much larger amount of current than that of other LS gates. See Table
C-4. That is the reason we use these buffers for driver when a signal is travelling
a long distance through a cable or it has to drive many inputs.

Table C-4: Electrical Specifications for Buffers/Drivers

Igy (MA) Igr, (mA)
7415244 3 12
741.5245 3 12

After this background on the fan-out, next we discuss the structure of
PIC18 ports.

PIC18 port structure and operation

Because all the ports of the PIC18 are bidirectional they all have the fol-
lowing four components in their structure:

1. Data latch
2. Qutput driver
3. Input buffer
4. TRIS latch

Figure C-10 shows the structure of a port and its four components. Notice
that in Figure C-10, the PIC18 ports have both the latch and buffer. Now the ques-
tion is, in reading the port, are we reading the status of the input pin or are we read-

734

; RD LAT
- ~J
DATA BUS 1 X
1 D Q Voo
WR PORT e X X 1
DATA LATCH 1 1 ONE
L 1 X 0
I i D e L
e]
WR TRIS Lok all
TRIS=1 TRIS LATCH Vss TTL or
ﬂ ‘7 SCHMITT
RD TRIS 1] TRIGGER
1 .1 LBt
- T’ - -
En 4
RD PORT LN |

Figure C-10. Inputting (Reading) 1 from a Pin in the PIC18

ing the status of the latch? That is an extremely important question and its answer
depends on which instruction we are using. Therefore, when reading the ports
there are two possibilities: (1) reading the input pin, or (2) reading the latch. The
above distinction is very important and must be understood lest you damage the
PIC18 port. Each is described next.

Reading the pin when TRIS = 1 (Input)

As we stated in Chapter 4, to make any bits of any port of the PIC18 an
input port, we first must write a 1 (logic HIGH) to the TRIS bit. Look at the fol-
lowing sequence of events to see why:

1. As can be seen from Figure C-10, a 1 written to the TRIS latch has “HIGH”
on its Q. Therefore, Q =1 and Q = 0. Because Q = 1, it turns off the P tran-
sistor.

2. Because Q = 0 and is connected to the gate of the N transistor, the N transistor
is off.

3. When both transistors are off, they block any path to the ground or VCC for
any signal connected to the input pin, and the input signal is directed to the
buffer.

4. When reading the input port in instructions such as “MOVFW PORTB” we are
really reading the data present at the pin. In other words, it is bringing into the
CPU the status of the external pin. This instruction activates the read pin of
buffer and lets data at the pins flow into the CPU’s internal bus. Figures C-10
and C-11 show HIGH and LOW signals at the input, respectively.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 735

E RD LAT
-

DATA BUS 0 X
0 D Q Voo
x |
WR PORT ok kX X. 1 -
DATA LATCH 1 Z 0 ZERO
1 1 X 0
e |
WRTRIS bok all
TRIS=1 TRIS LATCH Ves
I:]—_ RD TRIS 0
0 0 =519
e B T -— -~
En 4
RD PORT | |

Figure C-11. Inputting (Reading) 0 from a Pin in the PIC18
Writing to pin when TRIS = 0 (Output)

The above discussion showed why we must write a “HIGH” to a port’s
TRIS bits in order to make it an input port. What happens if we write a “0” to TRIS
that was configured as an input port? From Figure C-12 we see that when
TRIS = 0, if we write a 0 to the Data latch, then Q = 0 and Q=1.Asaresult of Q
= 1, the N transistor is “on” and the P transistor is “off.” If N is “on,” it provides
the path to ground for the input pin. Therefore, any attempt to read the input pin
will always get the “LOW” ground signal. Figure C-13 shows what happens when
we write “HIGH” to output port (Data latch) when TRIS = 0. Writing 1 to the Data
latch makes Q = 0. As a result of that, the P transistor is “on” and the N transistor
is “off,” which allows a | to be provided to the output pin. Therefore, any attempt
to read the input pin will always get the “HIGH” signal.

Avoid damaging the port

The following methods can be used as precautions to prevent damage to
the PIC18 ports:

1. Have a 10k ohms resistor on the V¢ path to limit current flow.

2. Connect any input switch to a 741.8244 tri-state buffer before it is fed to the
PIC18 pin.

The above points are extremely important and must be emphasized
because many people damage their ports and afterwards wonder how it happened.
We must also use the right instruction when we want to read the status of an input
pin. Table C-5 shows the list of instructions in which reading the port reads the sta-
tus of the input pin.

736

; RD LAT
..... \I
DATA BUS 0 0
0 D Q Voo
- ——i-
WR PORT >C} al! 1 "
i)——| P OFF
DATA LATCH 0 ZERO
+:
0 0 1 1 r
__ -
WR TRIS Lok ald
V
TRIS=0 TRIS LATCH 5% TTL or
SCHMITT
RD TRIS TRIGGER
A Q D
En <
RD PORT T |
|

Figure C-12. Outputting (Writing) 0 to a Pin in the PIC18

I:I— RD LAT
~d
...._.__’
DATA BUS 1 1
1 D Q Voo
— e
WR PORT X (_:\LT(alo 0 0
> >—iP oN
DATA LATCH 0 ONE
0 0 0 0
\‘]
WR TRIS bk al!
TRIS LATCH Vss
= TTL or
TRIS=0 E Y7 SCHMITT
RD TRIS TRIGGER
En 4
RD PORT Tr [|
— o

Figure C-13. Outputting (Writing) 1 to a Pin in the PIC18

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

737

Table C-5: Some of the Instructions Reading the Status of Input Port

Mnemonics Examples

MOVEW PORTX MOVFW PORTB
TSTFSZ £ TSTFSZ PORTC
BTFSS £,b BTFSS PORTD, O
BTFSC £,b BTFSC PORTE, 7
CPFSEQ £ CPFSEQ PORTB

PIC18 port fan-out

Now that we are familiar with the port structure of the PIC18, we need to
examine the fan-out for the PIC18 microconctroller. While the early chips were
based on NMOS IC technology, today's PIC18 microcontrollers are all based on
CMOS technology. Note, however, that while the core of the PIC18 microcon-

troller is CMOS, the circuitry driv- Table C-6: PIC18 Fan-out for PORTS
ing its pins is all TTL compatible.

That is, the PIC18 is a CMOS-based Pin Fan-out
product with TTL-compatible pins. IOL 8.5 mA
All the ports of the PIC18 have the I0H —3 mA
same 1/O structure, and therefore the 1L 1 pA
same fan-out. Table C-6 provides the IIH 1 pA

I/O characteristics of PIC18F458 Note: ngri?éeb;ugzn;i;i defined as current
ports.

74L.S244 driving an output

pin PIC18 7415244

In some cases, when an D DO Printer
PIC18 port is driving multiple inputs, PORTB N data
or driving a single input via a long L D7 port
wire or cable (e.g., printer cable), we %9
can use the 74L8244 as a driver. RDO P STROBE
When driving an off-board circuit, @ -
placing the 7415244 buffer between RD1 ‘§ ACK
your PIC18 and the circuit is essen- RD2 <l BUSY
tial because the PIC18 lacks suffi- y
cient current. See Figure C-14. 7415244

Figure C-14. PIC18 Connection to
Printer Signals

738

SECTION C.3: SYSTEM DESIGN ISSUES

In addition to fan-out, the other issues related to system design are power
dissipation, ground bounce, V¢ bounce, crosstalk, and transmission lines. In this

section we provide an overview of these topics.

Power dissipation considerations

Power dissipation of a system is a major concern of system designers,
especially for laptop and hand-held systems in which batteries provide the power.
Power dissipation is a function of frequency and voltage as shown below:

Q=CV
o oy

T T

, 1 _
since F= T and 1

I=CVF
now P=Vi=CVF

~IR

In the above equations, the effects of frequency and V¢ voltage should be

noted. While the power dissipation goes up linearly with frequency, the impact of
the power supply voltage is much more pronounced (squared), See Example C-2.

Example C-2

and the other uses 3 V for V.

Solution:

Compare the power consumption of two microcontroller-based systems. One uses 5 V

Because P = VI, by substituting I = V/R we have P = VZ/R. Assuming that R = 1, we
have P = 52 = 25 W and P = 32 = 9 W. This results in using 16 W less power, which

means power saving of 64%. (16/25 x 100) for systems using 3 V for power source.

Dynamic and static currents

Two major types of currents flow through an IC: dynamic and static. A
dynamic current is [= CVF. It is a function of the frequency under which the com-
ponent is working. This means that as the frequency goes up, the dynamic current
and power dissipation go up. The static current, also called DC, is the current con-
sumption of the component when it is inactive (not selected). The dynamic cur-
rent dissipation is much higher than the static current consumption. To reduce
power consumption, many microcontrollers, including the PIC18, have power-
saving modes. In the PIC18, the power saving mode is called sleep mode. We
describe the sleep mode next.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 739

Sleep mode

In sleep mode the on-chip oscillator is frozen, which cuts off frequency to
the CPU and peripheral functions, such as serial ports, interrupts, and timers.
Notice that while this mode brings power consumption down to an absolute mini-
mum, the contents of RAM and the SFR registers are saved and remain
unchanged. ‘

Ground bounce

One of the major issues that designers of high-frequency systems must
grapple with is ground bounce. Before we define ground bounce, we will discuss
lead inductance of IC pins. There is a certain amount of capacitance, resistance,
and inductance associated with each pin of the IC. The size of these elements
varies depending on many factors such as length, area, and so on.

The inductance of the pins is commonly referred to as self-inductance
because there is also what is called mutual inductance, as we will show below. Of
the three components of capacitor, resistor, and inductor, the property of self-
inductance is the one that causes the most problems in high-frequency system
design because it can result in ground bounce. Ground bounce occurs when a mas-
sive amount of current flows through the ground pin caused by many outputs
changing from HIGH to LOW all at the same time. See Figure C-15(a). The volt-
age is related to the inductance of the ground lead as follows:

_ . di
V=L 7

As we increase the system frequency, the rate of dynamic current, di/dt, is
also increased, resulting in an increase in the inductance voltage L (di/dt) of the
ground pin, Because the LOW state (ground) has a small noise margin, any extra
voltage due to the inductance can cause a false signal. To reduce the effect of
ground bounce, the following steps must be taken where possible:

1. The V¢ and ground pins of the chip must be located 1n the middle rather than

at opposite ends of the IC chip (the 14-pin TTL logic IC uses pins 14 and 7 for
ground and V). This is exactly what we see in high-performance logic gates
such as Texas Instruments' advanced logic AC11000 and ACT11000 families.
For example, the ACT11013 is a 14-pin DIP chip in which pin numbers 4 and
11 are used for the ground and V-, instead of 7 and 14 as in the traditional

TTL family. We can also use the SOIC packages instead of DIP.
2. Another solution is to use as many pins for ground and V¢ as possible to

reduce the lead length. This is exactly why all high-performance microproces-
sors and logic families use many pins for V- and ground instead of the tradi-

tional single pin for V¢ and single pin for GND. For example, in the case of

Intel's Pentium processor there are over 50 pins for ground, and another 50
pins for V.

746

Do
____ Vout
i __
D2
\ Time
> ___
lee leeH
Ground —/\r\,\
Ground bounce occurs when data Transient current going from 0 to 1
switches from all 1s to all Os
Figure C-15. (a) Ground Bounce (b) Transient Current

The above discussion of ground bounce is also applicable to V¢ when a

large number of outputs changes from the LOW to the HIGH state; this is referred
to as V¢ bounce. Hawever, the effect of Ve bounce is not as severe as ground

bounce because the HIGH (“1”) state has a wider noise margin than the LOW
(“0™) state.

Filtering the transient currents using decoupling capacitors

In the TTL family, the change of the output from LOW to HIGH can cause
what is called transient current. In a totem-pole output in which the output is
LOW, Q4 is on and saturated, whereas Q3 is off. By changing the output from the
LOW to the HIGH state, Q3 turns on and Q4 turns off. This means that there is a
time when both transistors are on and drawing current from Vc. The amount of

current depends on the Ry values of the two transistors, which in turn depend on

the internal parameters of the transistors. The net effect of this, however, is a large
amount of current in the form of a spike for the output current, as shown in Figure
C-15(b). To filter the transient current, a 0.01 uF or 0.1 pF ceramic disk capacitor
can be placed between the Vi and ground for each TTL IC. The lead for this

capacitor, however, should be as small as possible because a long lead results in a
large self-inductance, and that results in a spike on the V¢ line [V = L (di/dt)].

This spike is called V¢ bounce. The ceramic capacitor for each IC is referred to

as a decoupling capacitor. There is also a bulk decoupling capacitor, as described
next.

Bulk decoupling capacitor

If many IC chips change state at the same time, the combined currents
drawn from the board's V- power supply can be massive and may cause a fluc-
tuation of V- on the board where all the ICs are mounted. To eliminate this, a rel-
atively large decoupling tantalum capacitor is placed between the V- and ground

lines. The size and location of this tantalum capacitor varies depending on the
number of ICs on the board and the amount of current drawn by each IC, but it is

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 741

common to have a single 22 uF to 47 uF capacitor for each of the 16 devices,
placed between the V¢ and ground lines.

Crosstalk

Crosstalk is due to mutual inductance.

See Figure C-16. Previously, we discussed self- —D>—w——
inductance, which is inherent in a piece of con-

ductor. Mutual inductance is caused by two — >
electric lines running parallel to each other. The Lo
mutual inductance is a function of 1, the length
of two conductors running in parallel, d, the Fjgure C-16. Crosstalk (EMI)
distance between them, and the medium mate-

rial placed between them. The effect of crosstalk can be reduced by increasing the
distance between the parallel or adjacent lines (in printed circuit boards, they will
be traces). In many cases, such as printer and disk drive cables, there is a dedi-
cated ground for each signal. Placing ground lines (traces) between signal lines

reduces the effect of crosstalk. This method is used even in some ACT logic fam-
ilies where a Vo and a GND pin are next to each other. Crosstalk is also called

EMTI (electromagnetic interference). This is in contrast to EST (electrostatic inter-
ference), which is caused by capacitive coupling between two adjacent conduc-
tors.

Transmission line ringing _[—/\M

The square wave used in digital circuits is in
reality made of a single fundamental pulse and
many harmonics of various amplitudes. When this
signal travels on the line, not all the harmonics | gyffer
respond in the same way to the capacitance, induc-
tance, and resistance of the line. This causes what is _{>_'W"_ -=|I
called ringing, which depends on the thickness and | Series termination
the length of the line driver, among other factors. To

Ringing

reduce the effect of ringing, the line drivers are ter-

minated by putting a resistor at the end of the line. %’

See Figure C-17. There are three major methods of D iﬁ]
line driver termination: parallel, serial, and]%
Thevenin.

In serial termination, resistors of 30-50 | Parallel termination
ohms are used to terminate th.e line. The parallel an_d Figure C-17. Reducing
Thevenin methods are used in cases where there is
a need to match the impedance of the line with the
load impedance. This requires a detailed analysis of the signal traces and load
impedance, which is beyond the scope of this book. In high-frequency systems,
wire traces on the printed circuit board (PCB) behave like transmission lines, caus-
ing ringing. The severity of this ringing depends on the speed and the logic fami-
ly used. Table C-7 provides the length of the traces, beyond which the traces must
be tooked at as transmission lines.

Transmission Line Ringing

742

Table C-7: Line Length Beyond Which
Traces Behave Like Transmission Lines

Logic Family Line Length (in.)
LS 25

S, AS 11

F, ACT 8

AS, ECL 6

FCT, FCTA 5

(Reprinted by permission of Integrated Device Technology,
copyright IDT 1991}

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES 743

APPENDIX D

FLOWCHARTS AND
PSEUDOCODE

OVERVIEW

This appendix provides an introduction to writing flowcharts and
pseudocode.

745

Flowcharts

If you have taken any previous
programming courses, you are probably
familiar with flowcharting. Flowcharts
use graphic symbols to represent differ-
ent types of program operations. These
symbols are connected together into a
flowchart to show the flow of execution
of a program. Figure D-1 shows some of
the more commonly used symbols.
Flowchart templates are available to help
you draw the symbols quickly and neatly.

Pseudocode

Flowcharting has been standard
practice in industry for decades.
However, some find limitations in using
flowcharts, such as the fact that you can't
write much in the little boxes, and it is
hard to get the “big picture” of what the
program does without getting bogged
down in the details. An alternative to
using flowcharts is pseudocode, which
involves writing brief descriptions of the
flow of the code. Figures D-2 through
D-6 show flowcharts and pseudocode for
commonly used control structutes.

Terminal

Process

Subroutine

Input/
Output

Connector

O

Figure D-1. Commonly Used
Flowchart Symbols

Statement 1
Statement 2

!

Statement 1

l

Statement 2

Figure D-2. SEQUENCE Pseudocode versus Flowchart

746

Structured programming uses three basic types of program control struc-
tures: sequence, control, and iteration. Sequence is simply executing instructions
one after another. Figure D-2 shows how sequence can be represented in
pseudocode and flowcharts.

Figures D-3 and D-4 show two controf programming structures: [F-THEN-
ELSE and IF-THEN in both pseudocode and flowcharts.

Note in Figures D-2 through D-6 that “statement” can indicate one state-
ment or a group of statements.

Figures D-5 and D-6 show two iteration control structures: REPEAT
UNTIL and WHILE DO. Both structures execute a statement or group of state-
ments repeatedly. The difference between them is that the REPEAT UNTIL struc-
ture always executes the statement(s) at least once, and checks the condition after
each iteratton, whereas the WHILE DO may not execute the statement(s) at all
because the condition is checked at the beginning of each iteration.

Condition

IF (condition) THEN
Statement 1

ELSE Y

Statement 2 Statement 1 Statement 2

___...947

Figure D-3. IF THEN ELSE Pseudocode versus Flowchart

No
Condition
?
IF (condition) THEN ‘ Yes
Statement
Statement

S

{

Figure D-4. 1F THEN Pseudocode versus Flowchart

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 747

'

»| Statement

REPEAT
Statement
UNTIL (condition)

Na

Condition

Figure D-5. REPEAT UNTIL Pseudocode versus Flowchart

No
Condition

WHILE (condition) DO
Statement

Statement

I

l:

Figure D-6. WHILE DO Pseudocode versus Flowchart

Program D-1 finds the sum of a series of bytes. Compare the flowchart ver-
sus the pseudocode for Program D-1 (shown in Figure D-7). In this example, more
program details are given than one usually finds. For example, this shows steps for
initializing and decrementing counters. Another programmer may not include
these steps in the flowchart or pseudocode. It is important to remember that the
purpose of flowcharts or pseudocode is to show the flow of the program and what
the program does, not the specific Assembly language instructions that accomplish
the program's objectives. Notice also that the pseudocode gives the same informa-
tion in a much more compact form than does the flowchart. 1t is important to note
that sometimes pseudocode is written in layers, so that the outer level or layer
shows the flow of the program and subsequent levels show more details of how
the program accomplishes its assigned tasks.

748

Count

Until

Store

= 5

Address = 40H
Repeat

Add next byte
Increment address
Decrement counter
0

Count =

Sum

Start

\

Count =5
Address = 40H

=1 Add one byte

Increment address
pointer

Decrement counter

No

Yes

Store sum

Figure D-7. Pseudocode versus Flowchart for Program D-1

COUNTVAL EQU 5 ;COUNT = 5
COUNTREG SET 0x20 ;set aside location 20H for counter
SUM SET 0x30 ;set aside location 30E for sum
MOVLW COUNTVAL iWREG = 5
MOVWF COUNTREG ;locad the counter
LFSE 0, 0x40 ;locad pointer. FSRO = 40H, RAM address
CLRF WREG ;¢lear WREG
B5 ADDWF PQSTINCO, W ;add RAM to WREG and increment FSRO
DECF COUNTREG, F ;decrement counter
BNZ B5 ;loop until counter = zero
MOVWF SUM ;store WREG in SUM
Program D-1

APPENDIX D: FLOWCHARTS AND PSEUDOCODE

749

APPENDIX E.1

PIC18 PRIMER FOR
x86 PROGRAMMERS

x86 PIC18
8-bit registers: AL, AH, BL, BH, WREG and up to
CL, CH, DL, DH 256 RAM locations in Access Bank
16-bit (data pointer): BX, SI, DI TBLPTR
Program Counter: IP (16-bit) PC (21-bit)
Input:
MOV DX, port addr MOVFW PORTx ; (X = A,B,..G)
IN AL,DX
Output:
MOV DX,port addr MOVWF PORTx ; (x = A,B,..G)
OoUT DX,AL
Loop:
DEC CL DECF MyReg,F
JNZ TARGET BNZ TARGET
Stack pointer: SP (16-bit) SP (21-bit)
As we PUSH data onto the Push increments the SP.

stack, it decrements the SP. (Used exclusively for saving PC)

As we POP data from the stack, Pop decrements the SP.
it increments the SP. (Used exclusively for retrieving PC)

Data movement:

From the code segment:

MOV AL, CS: [SI] TBLRD
From the data segment:
MOV AL, [8I] MOVFW FSRx
From RAM:
MOV AL, [SI] MOVFW FSRx
(Use SI, DI, or BX only.)
To RAM: MOV [8I],AL MOVWEF FSRX

750

APPENDIX E.2

PIC18 PRIMER FOR
8051 PROGRAMMERS

8051

PIC18

8-bit registers: A, B, RO, R1, ...R7

WREG and up to 256 RAM
locations in Access Bank

16-bit (data pointer): DPTR TBLPTR
Program Counter: PC (16-bit) PC (21-bit)
Input:
MOV A,Pn ; (n=0 - 3) MOVFW PORTx ; (x = A,B,..G)
Output:
MOV Pn,A ; (n=0 - 3) MOVWF PORTx ; {x = A,B,..G}

Loop:
DJIJNZ R3, TARGET
(Using RO-R7)

DECF MyReg,F
BNZ TARGET

Stack pointer: SP (8-bit}
As we PUSH data onto the
stack, it increments the SP.

As we POP data from the
stack, it decrements the SP.
Data movement:
From the code segment:
MOVC A, @A+PC
From the data segment:
MOVX A,@DPTR

From RAM:
MOV A, @RO
(Use RO or R1 only)
To RAM:
MOV @RO,A
(Use RO or R1 only)

SP (21-bit)

Push increments the SP.
(Used exclusively for saving PC)

Pop decrements the SP.
(Used exclusively for retrieving PC)

TBLRD

MOVFW FSRx

MOVFW FSRx

MOVWF FSRx

APPENDIX E: 8051 PRIMER FOR X86 PROGRAMMERS 751

APPENDIX F

ASCII CODES

Ctrl | Dec | Hex | Ch | Code Dec | Hex | Ch Dec | Hex | Ch Dec | Hex | Ch
@ a8 NUL 32 28 64 48 e 96 60 *
“A 1 a1 = |SOH 33 21 t 65 41 A 37 61 a
~B 2 a8z 8 |STH 34 22 " 66 42 B 98 62 h
~C 3 a3 v |ET® 35 23 % 67 43 C 99 63 c
D 4 a4 + EOT 36 24] 68 44 1} 188 64 d
“E 5 as 4 'EMQ 37 25 # 69 4% E 161 65 e
“F 6 86 $ |ACK 38 26 & 78 46 F i82 66 f
~G ? a? = |BEL 39 27 ' 71 47 G 143 67 g
“H 8 as B |B8 40 28 C 72 48 H 184 68 h
“I 9 a7 g [HT 41 29 > 73 49 1 185 69 i
~J 10 an B [LF 42 2A * 74 4A J 186 6A J
K 11 @B d (VT 43 2B + 75 4B X 187 6B k
*L 12 ac ¢ |FF 44 2C . 76 4C L 198 6C 1
“M 13 apn F |CR 45 2D - 7 4D M 189 6D m
“N i4 BE A |80 16 2E - 78 4 N 118 6E n
~0 15 ar % (SI 47 2F Iy 9 4F 0 111 6F o
“p 16 i@ * [DLE 48 38 e ca P 112 7a D
~Q 17 11 4 [DC1 49 31 i 81 51 Q 113 H q
“R ig 12 t |DC2 58 32 2 82 52 R 114 72 r
“g 19 13 " IDC3 51 33 3 83 53 8 115 73 s
“T 28 14 9 1DC4 52 34 4 84 54 T 116 74 t
U 21 15 § |NAK o3 3s 5 85 55 U 117 75 u
~u 22 16 - |S¥N 4 36 6 86 56 U 118 76 v
“H 23 1? 1 |ETB 55 37 ? 87 57 W 119 ?? W
“B 24 18 1 |CAN Sé 38 8 88 58 2 12@ 78 x
~y 25 19 1 |EM 5?7 39 9 89 59 ¥ 121 79 y
~Z 26 in + |SUB 58 3n : 98 SA Z 122 7h =
“L 27 iB + |ESC 59 3B H 1 5B [123 7B {
N 28 iC v |F8 68 ac < 92 5C ~ 124 7C !
~1 29 1D + |GS 61 3D = 23 5D b 125 7D ¥
o 30 iE & |RS 62 3E > 24 5E - 126 7E ~
~_ 31 iF ¥ jus 63 3F ? 95 5F - 127 7F &

752

Dec | Hex | Ch Dec | Hex | Ch Dec | Hex | Ch Dec | Hex | Ch
128 aa c 168 A@ a 192 ca L 224 E@ o
129 81 u 161 Al i 193 C1 1 225 Ei B
138 | 82 2 162 A2 a 194 | G2 T 226 E2 r
131 83 & 163 A3 Q 195 C3 F 227 E3 L
132 84 a 164 A4 i 196 C4 - 228 E4 I
133 8% a 165 A5 Fi 197 G5 + 229 ES o
134 | 86 3 166 fib 2 198 Cb E 238 Eb H
135 87 [167 a7 2 199 c? It 231 E7 T
136 88 =] 168] [2988 (] L 232 E8 &
137 | 89 & 169 AY r 28 ce I 233 E? a
138 8A é 178 AR B 282 CA i 234 EA 1
139 g8 i 11 nB *® 203 CB W 235 EB [
148 | 8C i 172 AC S 284 cC It 236 EC L]
141 8D i 173 AD H 285 GDh = 237 ED o
142 8E A 174 AE « 286 CE 4 238 EE €
143 8F A 175 AF » 2a7 CF L 239 EF n
144 78 E 176 BA & 208 Da u 248 FB =
145 21 ® 17?7 | Bl & 2@a9 D1 T 241 F1 *
146 ?2 & 178 B2 ¥ 218 D2 n 242 F2 2
147 ?3 i 179 B3 | 211 D3 u 243 F3 £
148 94 a 186 | B4 q 212 D4 ? 244 | F4 r
149 95 n] 181 BS i 213 1Y F 245 F5 J
15@ 6 1] 182 Bé6 1l 214 D6 n 246 Fh 5
i51 97 u 183 B? " 215 D7 H 247 | F?]
152 98 ¥ 184 B8 3 216 De ¥ 248 re [
153 99 0] 185 B? H| 217 D? 4 249 F9 -
154 | 9 0] 186 | Ba 1 218 | DA r 258 | FA

155 9B t 187 BB 5 219 DB [] 251 FB ¥
156 9C E 188 BC | 22@ nc = 252 FC b
157 D ¥ 189 BED u 221 DD | 253 FD z
158 9E Ps 198 BE 4 222 DE | 254 FE 1
159 ?2F f 191 BF 1 223 DF L] 255 FR

APPENDIX F: ASCII CODES 753

APPENDIX G

ASSEMBLERS, DEVELOPMENT
RESOURCES, AND SUPPLIERS

This appendix provides various
sources for PIC18 assemblers and trainers.
In addition, it lists some suppliers for chips
and other hardware needs. While these are
all estabiished products from well-known
companies, neither the authors nor the pub-
lisher assumes responsibility for any prob-
lem that may arise with any of them. You
are neither encouraged nor discouraged
from purchasing any of the products men-
tioned; you must make your own judgment
in evaluating the products. This list is sim-
ply provided as a service to the reader. It
also must be noted that the list of products
is by no means complete or exhaustive.

PIC18 assemblers

The PIC18 assembler is provided by
Microchip and other companies. Some of
the companies provide shareware versions
of their products, which you can download
from their Web sites. However, the size of
code for these shareware versions is limited
to a few KB. Figure G-1 lists some suppli-
ers of assemblers.

PIC18 trainers
There are many companies that pro-

duce and market PIC18 trainers. Figure
G-2 provides a list of some of them.

Microchip Corp.
www.microchip.com

Custom Computer Services Inc
www.ccsinfo.com

Figure G-1. Suppliers of
Assemblers and Compilers

Microchip Corp.
www.microchip.com

www,MicroDigitalEd.com

Custom Computer Services Inc.
www.ccsinfo.com

RSR Electronics
www.elexp.com

Figure G-2. Trainer Suppliers

754

Parts Suppliers

Figure G-3 provides a list of suppliers for many electronics parts.

RSR Electronics

Electronix Express

365 Blair Road

Avenel, NJ 07001

Fax: (732) 381-1572

Mail Order: 1-800-972-2225
In New Jersey: (732) 381-8020
www.elexp.com

Altex Electronics

11342 TH-35 North

San Antonio, TX 78233
Fax: (210) 637-3264

Mail Order: 1-800-531-5369

www.altex.com

Digi-Key

1-800-344-4539 (1-800-DIGI-KEY)
Fax: (218) 681-3380
www.digikey.com

Radio Shack
www.radioshack.com

JDR Microdevices

1850 South 10th St.

San Jose, CA 95112-4108
Sales 1-800-538-5000
(408) 494-1400

Fax: 1-800-538-5005
Fax: (408) 494-1420
www.jdr.com

Mouser Electronics
958 N. Main St.
Mansfield, TX 76063
1-800-346-6873
WWW.MOUSET.com

Jameco Electronic

1355 Shoreway Road
Belmont, CA 94002-4100
1-800-831-4242

(415) 592-8097

Fax: 1-800-237-6948
Fax: (415) 592-2503
WWW.jameco.com

B. G Micro

P. O. Box 280298

Dallas, TX 75228

1-800-276-2206 (orders only)

(972) 271-5546

Fax: (972) 271-2462

This is an excellent source of LCDs, ICs,
keypads, etc.

www.bgmicro.com

Tanner Electronics

1100 Valwood Parkway, Suite #100
Carrollton, TX 75006

(972) 242-8702
www.tannerelectronics.com

Figure G-3. Electronics Suppliers

APPENDIX G: ASSEMBLERS, DEVELOPMENT RESOURCES, AND SUPPLIERS

755

APPENDIX H

DATA SHEETS

756

PIC18F2480/2580/4480/4580

25.0 INSTRUCTION SET SUMMARY

PIC18F2480/2580/4480/4580 devices incorporate the
standard set of 75 PIC18 core instructions, as well as
an extended set of 8 new instructions for the optimiza-
tion of code that is recursive or that utilizes a software
stack, The extended set is discussed later in this
section.

25.1 Standard Instruction Set

The standard PIC18 instruction set adds many
enhancements to the previous PICmicro® instruction
sets, while maintaining an easy migration from these
PiCmicro instruction sets. Most instructions are a
single pregram memory word (18 bits), but there are
four instructions that require two program memory
locations,

Each single-word instruction is a 16-bit word divided
into an opcode, which specifies the instruction type and
one or more operands, which further specify the
operation of the instruction.

The instruction set is highly orthogonal and is grouped
into four basic categories:

+ Byte-oriented operations

+ Bit-oriented operations

+ Literal operations

» Control operations

The PIC18 instruction set summary in Table 25-2 lists
byte-oriented, bit-oriented, literal and control

operations. Table 25-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands:

1. The file register {(specified by 'f)
2. The destination of the result (specified by ‘d’)
3. The accessed memory (specified by a’)

The file register designator ‘T specifies which file
register is to be used by the instruction. The destination
designator ‘d’ specifies where the result of the opera-
tion is to be placed. If 'd’ 1s zero, the result is placed in
the WREG register. If 'd’ is one, the result is placed in
the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f)

2. The bit in the fite register (specified by 'b}

3. The accessed memory {specified by ‘a’)

The bit field designator ‘b’ selects the number of the bit
affected by the operation, while the file register desig-

nator ‘f represents the number of the file in which the
bit is located.

The literal instructions may use some of the following
operands;

= A literal value to be loaded into a file register
{specified by 'K')
* The desired FSR register to load the literal value
into (specified by 'f)
* No operand required
(specified by '—'}
The control instructions may use some of the following
operands:
= A prograrm mermery address (specified by ‘'n’)
* The mode of the CALL or RETURN instructions
(specified by ‘s")
= The mode of the table read and table write
instructions (specified by ‘m’)
» No operand required
{specified by ‘)
All instructions are a single word, except for four
double-word instructions. These instructions were
made double-word to contain the required information
in 32 bits. In the second word, the 4 MSbs are '’s. If
this second word is executed as an instruction (by
itself), it will execute as a NOR

All single-word instructions are executed in a single
instruction cycle, untess a condittonal test is true or the
program counter is changed as a result of the instruc-
tion. in these cases, the execution takes two instruction
cycles with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 ps. If a conditional test is
true, or the pregram counter is changed as a result of
an instruction, the instruction execution time is 2 ps.
Two-word branch instructions (if true) would take 3 ps.

Figure 25-1 shows the general formats that the instruc-
tions can have. All examples use the convention 'nnh’
to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 25-2,
lists the standard instructions recognized by the
Microchip MPASM™ Assembler.

Section 25.1.1 “Standard Instruction Set” provides
a description of each instruction.

@ 2004 Microchip Technology inc.

Preliminary

DS39637A-page 361

APPENDIX H: DATA SHEETS

757

PIC18F2480/2580/4480/4580

TABLE 25-1: OPCODE FIELD DESCRIPTIONS
Field Description
a RAM access bit
a = 0: RAM location in Access RAM (BSR register is ignored)
a = 1. RAM bank is specified by BSR register
bbb Bit address within an 8-bit file register (0 to 7).
BSR Bank Select Register. Used to select the current RAM bank.
¢, b, 2, ov, N | ALU status bits: Carry, Digit Carmry, Zero, Qverfiow, Negative.
d Destination select bit
d = 0: store result in WREG
d = 1: store resutt in file register f
dest Destination: either the WREG register or the specified register file location.
£ B-bit Register file address (00h to FFh), or 2-bit FSR designator (Oh to 3h).
£, 12-bit Register file address (000h fo FFFh). This is the source address.
fa 12-bit Register file address (00Ch to FFFh). This is the destination address.
GIE Global Interrupt Enable bit.
k Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)
label Label narme
mm The mode of the TBLPTR register for the table read and table write instructions.
Only used with table rezd and table write instructions:
* No change to register (such as TBLPTR with table reads and writes)
*y Post-Increment register {such as TBLPTR with table reads and writes)
L Post-Decrement register (such as TBLPTR with table reads and writes)
+* Pre-Increment register {(such as TBLPTR with table reads and writes)
n The relative address (2's complement number) for relative branch instructions of the direct address for
Cal/Branch and Return instructions
PC Program Counter.
PCL Program Counter Low Byte,
BCH Program Counter High Byte.
PCLATH Program Counter High Byle Latch.
PCLATU Program Counter Upper Byte Laich.
PO Power-down bit.
PRODH Product of Multiply High Byte.
PRODL Product of Multiply Low Byte.
Fast Call/Return mode select bit
s = 0. do not update into/from shadow registers
s =1 certain registers loaded into/from shadow registers (Fast mode)
TBLPTR 21-bit Table Pointer (points to a Prograr Memory location).
TABLAT 8-bit Table Latch.
T Time-out bit.
TOS Top-of-Stack.
u Unused or unchangad.
WDT Watchdog Timer.
WREG Working register (accumuiator).
x Don't care (0’ or '1"). The assembler will generate code with x = o. It is the recommended form of use for
compatibiliity with all Microchip software tools.
Z4 7-bit offset value for indirect addressing of register files (source).
Z4 7-bit offset value for indirect addressing of register files (destination).
{ 1} Optional argument.
[text] Indicates an indexed address,
[text} The contents of text.
[expr] <n> Specifies bit n of the register indicated by the pointer expr.
— Assigned to.
< > Register bit field.
€ In the set of.
italics User defined ferm {font is Courier).

DS39637A-page 362

Pfeliminary © 2004 Microchip Technology Inc.

758

PIC18F2480/2580/4480/4580

FIGURE 25-1:

GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented fiie register operations

15 10 9 87 0
OPCODE | d [a l f(FILE #) [

d = ¢ for result destination to be WREG register
d = 1 for result destination fo be file register (f)
0 to force Access Bank

1 for BSR to select bank

8-bit file register address

a
as=
f=

Byte to Byte move operations (2-word}

15 12 11 0
[oPcoDE | T (Source FILE #) |
15 12 11 0

| 1111 | f (Destination FILE #) E

f = 12-bit file register address

Bit-ariented file register operations

15 1211 987 0
OPCODE [b(BIT#)] a | f(FLE® |

b = 3-bit position of bit in file register (f)
a = o to force Access Bank

a = 1 for BSR to select bank

f = B-bit fite register address

Literal operaticns

15 8 7 0
OPCODE k (literal)

k = 8-bit immediate value

Control operations

caLL, GoTo and Branch operations
15 87 0
| OPCODE | n<7:0> (iteral) |
15 12 H 0
| 1111 | n<19:8=> (literal} l

n = 20-bst immediate value

15 8 7 0
| OPCODE | g| n<7.0»(iteral) |
15 12 14 0
| 111 | n<19:8> (literaf) |
$ = Fast bit
15 1 10 o
| opcopE | n<10.0> (itera) |
15 87 0
| opcopE | a<7:0~ fiteral) |

Example Instryction

ADDWF MYREG, W, B

MCVFF MYREGLl, MYREG2

BSF MYREG, bit, B

MCOVLW 7Fh

GOTO Label

CALL MYFUNC

BRA MYFUNC

BC MYFUNC

© 2004 Microchip Technolegy inc.

Preliminary

DS39637A-page 363

APPENDIX H: DATA SHEETS

759

PIC18F2480/2580/4480/4580

TABLE 25-2: PIC18FXXXX INSTRUCTION SET

i 16-Bit Instruction Word
%ﬁm’:g' Description Cycles Yo Lsb Astﬂ:::'t‘:d Notes
BYTE-ORIENTED OPERATIONS
ADDWF fda AddWREGandf 1 0010 0lda ffff f£f£ff|C,DC, Z OV, Ni1 2
ADDWFC 1, d, a |Add WREG and Carry bitto f 1 0010 ©bda frfff ffff|C,DC,Z OV, N1, 2
ANDWF f d, a |AND WREG with § 1 00C1 ¢lda ffff fiff|Z N 1,2
CLRF fa Clear f 1 0110 101a ffff ffff|Z 2
COMF f d, a [Complement f 1 ool 11da ffff Efff [N 1,2
CPFSEQ f a Compare fwith WREG, skip= [1{2cr3)[0110 001a ffff f£fff None 4
CPFSGT fa Compare f with WREG skip > |1(20r3) 0110 010a ffff ££ff None 4
CPFSLT f = Compare f with WREG, skip< [1{20or3){ 0110 coca f£fff f££ff |None 1,2
DECF td a {Decrement f 1 0000 Olcda fEfff f£Ffff|C,DC,Z OV, N|[1,2, 3, 4
DECFSZ f§ d, a {Decrementf, Skip ifO 1(20r3)j0010 1lida f£fff f£fff None 1,2, 3 4
DCFSNZ f d, a |Decrement f, Skip if Not 0 1{20r3)| 0100 1lda fILff £Lff None 1,2
INCF f, d, a |Increment f 1 0010 10da ffff ffff(C,DC, Z, OV, N{1,2, 3, 4
INCFSZ f, d, a |Incrementf, Skip if C 1(20r3)| 0011 1ida ffff £fff [None 4
INFSNZ f, d, a |Increment f, Skip if Not 0 1(2or3)| 0100 10da ff££f ffff [None 1,2
IORWF f d, a {Inclusive OR WREG with f 1 0001 06da ffff ffff|Z, N 1,2
MOVF f,d, a Movef 1 0101 0oda ffff f£fff|Z, N 1
MOVEF fs, Ty [Movef; (sourcejto 1stword |2 1100 £fff ffff f£Iff [None
fy {destination)2nd word 1111 £fff ffff ffff
MOVWF fa Move WREG to f 1 0110 111a £ffff £ifff |None
MULWF fa Multiply WREG with f 1 0000 00la ffff ffff [None 1,2
NEGF fa Negate f 1 0110 1l10a ffff f£££f(C,0DC, Z OV, N
RLCF f d, a |Rotate Left f through Camy 1 0011 cida ffff ff£f|C, Z N 1,2
RELNCF f d, a |Rotate Left f(No Carry) 1 0100 0lda ffff ffff(Z N
RRCF f d, a {Rotate Right f through Carry 1 0011 ©c0da ffff ffff|C,Z N
RRNCF f d, a |Rotate Right f {No Carry) 1 0100 ooda ffff £fff(Z N
SETF fa Setf 1 0110 100a ffff £fff [None 1,2
SUBFWB f d, a |Subtract f from WREG with 1 0101 0lda ffff f£fff|C DC Z OV N
borrow
SUBWF f d, a |Subtract WREG from f 1 0101 11da ffff ff£ff|C DC,Z OV, N1, 2
SUBWFB f, d, a {Subtract WREG from f with 1 0101 10da ffff f£fff |C,DC,Z QV. N
borrow
SWAPF f.d, a |Swap nibbles in T 1 0011 10da f£fff ffff [None
TSTFSZ f a Test §, skip if 0 1{20r3)j 0110 0ila Fffff £Iff None 1,2
XORWF f &, a |Exclusive OR WREG with f 1 0001 10da fEff fLFEf|Z N

Note 1: When a Port register is medified as a function of itself (e.g., MOVF PORTB, 1, 0) the value used will be that
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is
driven low by an external device, the data will be written back with a '0".

2: |fthis instruction is executed on the TMRO register {and where applicable, 'd’ = 1}, the prescaler will be cleared
if assigned.

3: If Program Counter (PC} is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that al
prograrm memory locations have a valid instruction.

5: Ifthe table write starts the write cycle to internal memory, the write will continue until terminated.

DS39637A-page 364 Preliminary © 2004 Microchip Technology Inc.

760

PIC18F2480/2580/4480/4580

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)
Mnemonic, o 16-Bit Instruction Word Status
Operands Description Cycles MSh LSb Affected

BIT-ORIENTED OPERATIONS
BCF f b, a |BitClearf 1 1001 bbba ffff ffff (None 1,2
BSF fbha|BitSetf 1 1000 bbba £fff £fff (None 1,2
BTFSC fb Bit Test f, Skip if Clear 1(20r3)i 1011 bbba ffff f£ff None 34
BTFSS fb Bit Test f, Skip if Set 1{20r3)/ 1010 bkba £fff ffff None 3.4
BTG f.d Bit Toggle f 1 0111 bbba ffff fIfff |None 1,2
CONTROL OPERATIONS
BC n Branch if Carry 1{2) 1116 ©¢010 nnnn nnnn |None
BN n Branch if Negative 1{2) 1110 ©1310 nnnn nnnn |[None
BNC n Branch if Not Carry 1{2) 1110 ¢01il1 mnnn nnnn None
BNN n Branch if Not Negative 1(2) 1110 0111 rnnnn nnnn |[None
BNOV n Branch if Not Overflow 1{2) 1110 ©101 nnnn nnnn [None
BNZ n Branch if Not Zero 1(2) 111C €001 rmnn nnnn |[None
BOV n Branch if Overfiow 1(2) 1110 0100 nnnn nnnn;None
BRA n Branch Unconditionally 2 1101 ¢nnn nmnn nnnn |None
BZ n Branch if Zero 1(2) 1110 0000 mnnn nnnn |Nene
CALL n, s |Call subroutine1st word 2 1110 110s kkkk kkkk [None

2nd word 1111 kkkk kkkk kkkk|_
CLRWDT e Clear Watchdog Timer 1 000G 0600 0000 €100 |TO,P
DAWY o Decimat Adjust WREG 1 0000 0000 ©0c00 0111 |C
GOTO n Go to address 1st word 2 111¢ 1111 kkkk kkkk [None

2nd word 1111 kkkk kkkk kkkk
NOP — No Operation 1 000C ©C00 0000 0000 |None
NOP — No QOperation 1 1111 xxxx xxxx xxxx |None
PCOP — Pop top of retumn stack (TGS) |1 0000 0003 0000 0110 |None
PUSH — Push top of retumn stack (TOS) |1 000G ©CO00 0000 0101 |None
RCALL n Relative Call 2 1101 1nnn nnnn o npann (None
RESET Software device Reset 1 0000 Q000 1111 1111 |AM
RETFIE s Return from interrupt enable 2 0008 0000 Q001 GO0s |GIE/GIEH,

PEIE/GIEL

RETLW k Return with literal in WREG 2 0000 1200 kkkk kkkk |None
RETURN s Return from Subroutine 2 0000 €000 0001 ¢Ols (None
SLEEP - Go into Standby mode 1 0000 Q000 0000 0011 |TO,PD
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that

value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is
driven low by an external device, the data will be written back with a ‘0.

2: Ifthis instruction is executed on the TMRO register (and where applicable, 'd’ = 1), the prescaler will be cleared
if assigned.

3. If Program Counter (PC} is modified or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOB

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all
program memory locations have a valid instruction.

5: Ifthe table write starts the write cycle to internal memory, the write will continue until terminated.

® 2004 Microchip Technology Inc. Preliminary DS39637A-page 365

APPENDIX H: DATA SHEETS 761

PIC18F2480/2580/4480/4580

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnemonic, L 16-Bit Instruction Word Status

Operands Description Cycles — op | Affected Notes
LITERAL OPERATIONS
ADDLW k Add literal and WREG 1 0000 1111 kkkk kkkk |C,DC, Z OV, N
ANDLW k AND literal with WREG 1 0000 1011 kkkk kkkk |Z, N
[ORLW k Inclusive OR Hteral with WREG |1 0000 1001 kkkk kkkk |Z, N
LFSR f Kk Move literal (12-bit) 2nd word 2 1110 1110 00ff kkkk [None

to FSR(f) 1st word 1111 Q000 kkkk kkkk

MOVLB K Move literal to BSR<3:0> 1 Q000 0001 0000 kkkk |None
MOVLW K Move literal to WREG 1 0000 1110 kkkk kkkk |None
MULLW K Muttiply literal with WREG 1 0000 1101 kkkk kkkk |[None
RETLW K Return with literal in WREG 2 0000 1100 kkkk kkkk [None
SUBLW K Subtract WREG from literal 1 000C 1000 kkkk kkkk |C,DC, Z OV N
XORLW K Exciusive OR literal with WREG |1 000G 1010 kkkk kkkk |Z, N
DATA MEMGRY <> PROGRAM MEMORY OPERATIONS
TBLRD* Table Read 2 G000 G000 0000 1000 [None
TBLRD*+ Table Read with post-increment COGC Q000 0000 1001 [None
TBLRD*- Table Read with post-decrement 0OGC Q000 0600 1010 [None
TBLRD+* Table Read with pre-incremerit 000G 0000 0000 1011 (None
TBLWT* Table Write 2 0000 ©000 0000 1100 |None 5
TBLWT*+ Table Write with post-increment 00aC Q000 0000 1101 |None 5
TBLWT*- Table Write with post-decrement 000¢ 0000 0000 1110 |None 5
TBLWT+* Table Write with pre-increment 0000 0000 0000 1111 |[None 5
Note t: When a Port register is modified as a function of itseif (e.g, MOVF PORTE, 1, 0), the value used wili be that

value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is
driven low by an external device, the data will be written back with a 0",

2: Ifthis instruction is executed on the TMRO register (and where applicable, 'd' = 1), the prescaler will be cleared
if assigned.

3. IfProgram Counter (PC) is modified or a conditional fest is true, the instruction requires two cycles. The second

cycle is e

xeciited as a NOR

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP
unless the first word of the instruction retrieves the information embedded in these 16 bits, This ensures that afl
program memory locations have a valid instruction.

5. ifthe table write starts the write cycie to internal memory, the write will continue until terminated.

DS39637A-page 366

Preliminary

@& 2004 Microchip Technalagy Inc,

762

PIC18F2480/2580/4480/4580

25.11 STANDARD INSTRUCTION SET

ADDLW ADD Literal to W ADDWF ADDWto f
Syntax: ADDLW Kk Syntax: ADDWF f{d{a}}
Operands: 0<k=<255 Operands: 0=f=285
. de [0.1]
tion: kK
Operation W+k W ac[01]
Status‘A!Tected. N, OV, C,DC, Z Operation: (W) + (f) - dest
Encoding: [evoe [1112 | k):;kdl Kk | Status Affected: N.OV.C. D6 2
Description: The contents of W are added to the -
8-bit literal 'k’ and the resutt is placed Encoding: [o010 | oraa | crsr | eree |
in'W. Description: Add Wio register 7. If'd"is '0’, the
. result is stored in W, If 'd’ 18 '2', the
Words: ! result is stored back in register '’
Cycles: 1 {defautt).
Q Cycle Activity: if‘a' is ‘0", the Access Bank is selected.
Qi Qz Q3 Q4 i'a'is '1', the BSR is used to select the
Decode Read Process Write to W GPR bank (defaul).

jiteral 'k’ Data If‘a’is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing

Example: ADDLW 15h mode whenever f < 95 (SFh). See
) Section 25.2.3 “Byte-Oriented and
Before Instruction Bit-Oriented Instructions in Indexed
W = 10h Literal Offset Mode™ for details.
After Instruction
W = 25h Words: 1
Cycles: 1
Q Cycle Activity:
03] Q2 Q3 Q4
Decade Read Process Wite to
register ‘' Data destination
Example; ADDWP REZ, 0, 0
Before Instruction
w = 17h
REG = 0C2h
After Instruction
W = QD8h
REG = 0Czh

Note: - = All PIC18 instructions may take ari optional label- argument preceding the instruction mhemanic for use in
smt:ohc addressmg i alatiel is used, the mstmcﬁon format thenbecomes: {label} ihstructioh argument(s).

® 2004 Microchip Technalogy Inc. Preliminary DS3I9637A-page 367

APPENDIX H: DATA SHEETS 763

PIC18F2480/2580/4480/4580

ADDWFC ADD W and Carry bitto f ANDLW AND Literal with W
Syntax: ADDWFC f{d{a}} Syntax: ANDIW k
Operands: 0=f<265 Opetands: 0=k<255
de [01] I
aeo] Operation: (W) AND. K =W
Operation; (W) + () + (C) — dest Sta!us‘Aﬁected. NZ
Status Afflected: N,OV,C,DC,Z Encoding: [o000 [1011 | ik | eieck |
- Description: The contents of W are ANDed with the
Encoding: I 0010 | coda | fesr I £EEF | 8-bit fiteral 'i’. The result is placed in W.
Description: Add W, the Carry flag and data memory .
S At it . Words: 1
{ocation 'f. If 'd"is '0’, the resutt is
placed in W. If*'d' is ‘1, the result is Cycles: 1
place_d in data memory Q Cycle Activity:
location 'f. . a a2 Q3 Q4
If'a'is ‘o', the Access Bank is selected. - -
Ifa’is1', the BSR is used to select the Decode | Read iteral | Process | Wite to W
GPR bank {defauit). k Data
If 'a’is ‘0" and the extended instruction
set is enabled, this instruction operates Example: ANDLW 05Fh
in Indexed Literal Offset Addressing Before Instruction
mode whenever f < 95 (5Fh). See W = A3R
Section 25.2.3 “Byte-Oriented and After Instruction
Bit-Oriented Instructions in Indexed W = 03h
Literal Offset Mode” for details.
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Wiite to
register ‘f’ Data destinaticn
Example: ADDWEC REG, 9, 1
Before Instruction
Carrybit = 1
REG = 0Zh
w = 4Dh
After instruction
Carrybit = O
REG = 02h
W = S0h
DS39637A-page 368 Preliminary ® 2004 Microchip Technology Inc.

764

PIC18F2480/2580/4480/4580

—
ANDWF AND W with £ BC Branch if Carry
Syntax: ANDWF f{d{a}} Syntax: BC n
Operands: 0=7<255 Operands: -128<n =127
d e [0.1) Operation: if Carry bitis ‘1’
ae[01] (PC) + 2+2n — PC
Operation: () LAND. (f) — dest Status Affected: None
Status Affected: N, Z Encoding: l 1110 I 6010 i nann [nnnn I
Encoding: | eaa1 l o1da I Feff | fefe | Description: if the Cary bit is ‘1", then the program
Descrption: The contents of W are AND'ed with will branch.
register 'f. If 'd' is ‘0", the result is stored The 2's complement number ‘2n’ is
!ﬂ W, !f 'd'is L', the result is stored back added to the PC. Since the PC will have
in register 'f' (default). incremented to fetch the next
If‘a’ is '0’, the Access Bank is selected. instruction, the new address will be
If‘a’is‘1', the BSR is used to select the PC + 2 + 2n. This instruction is then a
GPR bank (default). twe-cycla instruction,
If‘a’is ‘¢’ and the extended instruction Words: 1
set is enabled, this Instruction operates) 0
in Indexed Literal Offset Addressing Cycles: {2)
mode whenever f < 85 (SFh). See Q Cycle Activity:
Section 25.2.3 "Byte-Oriented and If Jump:
Bit-Oriented Instructions in Indexed
Literal Offset Mode™ for details. Decode |Read literal | Process | Wite to PC
Words: 1 " Data
Cycles: 1 No No No No
Q Cycle Activity: operation operation aperation operation
a1 az Q3 Q4 T No "”"";1 a2 o3 a4
Decode Read Process Write to Decod R teral P N
register 'f' Data destination code ead litera 100855 o
‘n Data operation
Example: ANDWF REG, G, ©) HERE se s
Before Instruction
¢ or\% ' = 17h Befere Instruction
REG = C2h PC = address (HERE)
After Instruction After instruction
W = h If Carry = 1
REG = %%h i CarFr’f = g(.:ldress (KERE + 12)
PC = address (HERE + 2)
© 2004 Microchip Technology Inc. Preliminary DS39637A-page 369

APPENDIX H: DATA SHEETS

765

PIC18F2480/2580/4480/4580

BCF Bit Clear f BN Branch if Negative
Syntax: BCF f b{a} Syntax: BN n
Operands: D<fs255 Operands: 12805127
0sb=7 Operation: if Negative bit is ‘1’
ae 0] (PC) + 2+ 2n 5 PC
Operation: 0 — feb> Status Affected: None
Status Affected: None Encoding: | 1110 I 6110 | nnnn] nnan |
Encoding: | 1001 | bbba | Ffef | £ffe | Description: if the Negative bit is ‘1", then the
Description: Bit b’ in register ' is cleared. program will branch.
If'a’is '0', the Access Bank is selacted, The 2's complement number 2n' is
If'a’is‘1’, the BSR is used to select the added to the PC. Since the PC will have
GPR bank (default). incremented to fetch the next
If ‘a’ is ‘0’ and the extended instruction instruction, the new address wilt be
set is enabled, this instruction operates PC + 2+ 2n, This inslrustion is then a
in indexed Literal Offset addressing two-cycle Instruction.
mode whenever f £ 95 (5Fh). See Words: 1
Section 26.2.3 “Byte-Oriented and)
Bit-Oriented Instructions in Indexed Cycles: 12
Literal Offset Mode™ for details. Q Cycle Activity:
Words: 1 If Jump:
Cycles: ! D Q1de R dQ Ii 1] P - Wit Qt4 PC
Q Cycle Activity: o ® ' ° l’;:f:s °e
{#3] Q2 Q3 Q4 No No No No
Decode Read Process Write operation aperation operation operation
register ‘f' Data register ‘P If No Jump:
™ Q2 Q3 Q4
Exampie: BCF FLAG_REG, 7., 0 Decode |Read literal | Process No
Before Instruction n Data operation

FLAG_REG = C7h

After Instruction Example: HERE BN Jump

FLAG_REG = 47h
Befare instruction

PC = address (HERE)
After Instruction
i Ne%ative = 1
C = address (Jump)
f Negative =
PC = address (HERE + 2)
DS39637A-page 370 Preliminary & 2004 Microchip Technology Inc.

766

PIC18F2480/2580/4480/4580

BNC Branch if Not Carry BNN Branch if Not Negative
Syntax: BNC n Syntax: BNN n
Operands: -128sns127 Operands: -128<ns127
Operation: If Carry bit is ‘o’ Operation; if Negative bitis'o’
(PC)+2+2n— PC {PCy+2+2n-3PC
Status Affected: Neone Status Aflected: None
Encading; | 1110 I 0611 | nnnn [nnnn ! Encading: | 1110 I 0111 ! nnan l nnnn I
Description: If the Carry bit is ‘o', then the program Descrigtion: If the Negative bit is ‘0", then the
wifl branch. program will branch.
The 2's complement number ‘2n' is The 2's complement number '2n’ is
added to the PC. Since the PC wili added to the PC. Since the PC will have
have incremented to fetch the next incremented to fetch the next
instruction, the new address will be instruction, the new address will be
PC + 2 + 2n. This instruction is then a PC + 2 + 2n. This instruction is then a
two-cycle instruction. two-cycle instruction,
Words: 1 Words: 1
Cycles: 1(2) Cycles: 1(2)
Q Cycle Activity: Q Cycle Activity:
if Jump: {f Jump:
Q1 Q2 Q3 Q4 [} Q2 Q3 Q4
Decode Read literal Process | Write to PC Decode Read literal Process | White to PC
e Data n Data
No No No No No No No No
aperation operation operation operation operation operation operation operatian
If No Jump: If No Jump:
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read literal Process No Decode Read literad Process Ne
‘n’ Data operation ‘n' Data operation
Example: HERE BNC Jump Example: HERE BNN Jump

Before instruction

PC

i

address (HERE)

After Instruction

Before Instruction

PC

address (HERE)

After instruction

If Carry = If Nagative = 0
PC = address (Jump) PC = address (Jump}
If Carry = ; If Ne%at‘we = ;
PC = address (HERE + 2} C = address (HERE + 2)

© 2004 Microchip Technology Inc. Preliminary DS30637A-page 371

APPENDIX H: DATA SHEETS 767

PIC18F2480/2580/4480/4580

BNOV Branch if Not Overflow BNZ Branch if Not Zero
Syntax: BNOV n Syntax: BNZ n

Operands: -128sns127 Operands: -128<n<127
Operation: if Overflow bitis ‘¢’ Operation: if Zero bit is *0°

(PC)+2 +2n = PC (PC)+2+2n - PG

Status Affected: None Status Aflected: None
Encoding: [1110] 0191 E nnan l nnon ! Encoding: | 1110 I 0601 1 nnnn I nnnn |
Description: If the Overflow bitis '0', then the Description: If the Zero bit is '0’, then the program
program will branch. will branch.
The 2's complement number 20’ is The 2's complement number ‘2n’ is
added to the PC. Since the PC wiil have added to the PC. Since the PC will have
incremented o fetch the next incremanted to fetch the next
instruction, the new address will be instruction, the new address will be
RC + 2 + 2n. This instruction is then a PC + 2 + 2n. This instruction is then a
two-gycle instruction. two-cycle instruction.
Words: 1 Words: 1
Cycies: 1(2) Cycles: 1{2)
Q Cycle Activity: Q Cycle Activity:
if Jump: If Jump:
Q1 Q2 Q3 Q4 [} Q2 Q3 Q4
Decode Read literal Process [Write to PC Decode Read literal Process | White to PC
'w Data ‘n' Data
No Na Mo Mo No No No No
operation operation operation operation operation operation operation operation
If No Jump: i Ne Jump:
(o} Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read lteral Process No Decode Read {iteral Process No
" Data operation o Data operation
Example: HERE BNOV Jump Example: HERE BNZ Jump
Before Instruction Before Instruction
PC = address (HERE} PC = address (HERE)
After Instruction After Instruction
Ii Overflow = N if Zero = 0
PC = address (Jump) PC = address {Jump}
If Overflow = 1 If Zerp = '
P = address (HERE + 2} PC = address (HERE + 2)
DS39637A-page 372 Preliminary ® 2004 Microchip Technology ne.

768

PIC18F2480/2580/4480/4580

BRA Unc¢onditional Branch BSF Bit Set f
Syntax: BRA n Syntax: BSF f b{a}
Operands: -1024 <n <1023 Operands: 0<£5255
; 0<b=s7
: PC)+2+
Operation L J+2+2n > PC ae 0]
Status‘Aﬁecled. one Operation: 1 =
Encoding: IA 1101 | onnn [nnnn | nnnn | Status Affected: None
Description: dd the 2's complement number ‘2n’ to .
the PC. Since the PC will have Encoding: | 000 [pewa] eeer | rect |
incremented to fetch the next Description: Bit ‘b’ in register ‘T is set.
instruction, the new address wilt be ifa' is ‘0", the Access Bank is selected.
PC+2+2n. Thls_ instruction is a If'a’is ‘L', the BSR is used to select the
two-cycle instruction, GPR bank (default).
Words: 1 If @' is ‘0’ and the extended instruction
Cycles: 5 set is enabled, this instruction operates
) N in Indexed Literal Offset Addressing
Q Cycle Activity: mode whenever f < 85 (5Fh). See
Q1 Q2 Q3 Q4 Section 25.2.3 “Byte-Oriented and
Decode |Read literal | Process |\Wite to PC Bit-Oriented Instructions in indexed
" Data Literal Offset Mode™ for details.
No No No No Words: 1
operation | operation | operation | operation Cycles: 1
Q Cycle Activity:
Example; HERE BRA Jump Q1 Q2 Q3 Q4
Before Instruction Decode Read Process Wite
PC = address (HERE) register 'f Data register '
After Instruction
PC = address (Jump) Example; BSF FLAG REG, 7, 1
Before Instruction
FLAG_REG = 0Ah
After instruction
FLAG REG = BAh
© 2004 Micrachip Technelogy Inc. Preliminary DS39637A-page 373

APPENDIX H: DATA SHEETS 769

PIC18F2480/2580/4480/

4580

BTFSC Bit Test File, Skip if Clear BTFSS Bit Test File, Skip if Set

Syntax: BTFSC f b{a} Syntax: BTFSS f b {a}

Operands: 0sf< 258 Operands: 0265
Qchs? D<he?
ae[0,1] ae[01]

Operation: skip if (f) = ¢ Operation: skip if(f) = 1

Status Affected: None Status Affected: None

Encoding: [1011 | boba | erer | eerf | Encoding: [1010 | wova | erer | rece |

Description: If bit ‘b’ in register 'f is '0’, then the next Description: If hit *b' in register 'f is ‘1', then the next
instruction is skipped. If bit ‘b’ is ‘0", then instruction is skipped. If bit ‘b’ is '1’, then
the next instruction fetched during the the next instruction fetched during the
current instruction execution is discarded curment instruction execution is discarded
and a NCP is executed instead, making and a NOP is executed instead, making
this a two-cycle instruction. this a two-cycle instruction.
If'a’is ‘0", the Access Bank is selected. If If'a’ is ‘o', the Access Bank is selected. If
‘a’is 'y, the BSR is used to select the ‘a’is *1’, the BSR is used to select the
GPR bank (default). GPR bank (default).
If'a' is '0' and the extended instruction set If*a’is 'o’ and the extended instruction
is enabled, this instruction operates in set is enabled, this instruction cperates
Indexed Literal Offset Addressing in Indexed Literal Offset Addressing
mode whenever f< 95 (5Fh). mode whenever f < 95 {(SFh).
See Section 25.2.3 “Byte-Oriented and See Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed Bit-Oriented Instructions in Indexed
Literal Offset Mode™ for details. Litera) Offset Mode™ for detalls.

Words: 1 Words: 1

Cycles: 1(2) Cycles: 1(2)

Q Cycle Activity:

Note: 3 cycles if skip and followed
by & 2-word instruction.

Q Cycle Activity:

Note: 3 cycles if skip and followed
by a 2-word instruction.

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read Process No Decode Read Process No
register 'f Data operation registes 'Y Data operation
If skip: If skip:
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Mo No No No No No No No
operation operation operation cperation operation operation operation operation
If skip and followed by 2-word instruction: If skip and followed by 2-word instruction:
Q1 Q2 Q3 G4 Q1 Q2 Q3 Q4
No No No No No No No No
operation operation operation operation operation operation operation operation
No No No No No No No No
operation operation operation oparation operation operation operation aperation
Example: HERE BTFSC FLAG, 1, 0 Example: HERE BTFSS FLAG, 1, 0
FALSE FALSE
TRUE TRUE

Before Instruction

Before Instruction

PC = address {(HERE) PC = address {HERE)
Afer Instruction After Instruction
IFFLAG=1> = 0 FFLAG<1> = 0,
PC = address (TRUE) PC = address {FALSE)
fFLAG=1> = {1, IfFLAG<1> = ;
PC = address (FALSE) PC = address (TRUE)

D539637A-page 374 Preiiminary © 2004 Microchip Technology Inc.

770

PIC18F2480/2580/4480/4580

BTG Bit Toggle f BOV Branch if Overflow
Syntax: BTG 1, b {3} Syntax: BOV n
Operands: 0<fe265 Operands: 128 <ns 127
Osbe? Operation; if Overflow bitis 'L’
as[01] (PC}+ 2+ 2n = PC
Operation: (f) — f Status Afiected: None
Status Affected: None Encoding: [1110 | 0100 | nomn | nman |
Encoding: [o11r | wbba | rrer | reer | Description: If the Overflow bit is ‘1’, then the
Description: Bit 'b' in data memory location ‘f is program will branch.
inverted. The 2's complement number 2n' is
if‘a'is ‘o', the Access Bank is selected. added to the PC. Since the PC will
if'a’is")’, the BSR is used to select the have incremented to fetch the next
GPR bank (default). instruction, the new address will be
if'a’ is ‘0’ and the extended instruction PG +2 + 2n. This instruction is then a
set is enabled, this instruction operates two-cycle instruction.
in Indexed Literal Offset Addressing Words: 1
mode whenever f £ 95 (5Fh). See Cyoles: 12
Section 26.2.3 “Byte-Oriented and ycles: @
Bit-Oriented Instructions in Indexed Q@ Cycle Activity:
Literal Offset Mode” for details. If Jump:
Words: 1 e} Q2 Q3 Q4
Cycles: 1 Decode Read literal Process | Write to PC
n Data
ie Activity:
Q Cycie Activity No No No No
Qt Q2 Q3 Q4 operation | operation | operation | operation
Decode Read Process Wite If No Jump:
i ' il
register Data register o1 a2 a3 Q4
Decode Read literal Process No
Example: BTG PORTC, 4, 0 ‘n Data operation
Before Instruction:
PORTC = 0111 0101 [75h] . u
After Instruction: Example: ! ERE BV Juep
PORTC = o110 0101 [65h] Before Instruction
PC = address (HERE)
Afier Instruction
If Qverflow = 1
PC = address (Jump)
If Overflow = ;
PC = address (HERE + 2}
® 2004 Microchip Technology In. Preliminary DS39637A-page 375

APPENDIX H: DATA SHEETS 771

PIC18F2480/2580/4480/4580

BZ Branch if Zero CALL Subroutine Caill
Syntax: 8Z n Syntax: CALL &{s}
Operands: 128 ns127 Operands: 0 <K< 1048575
Operation: if Zero bitis ‘1’ s=[0.1]

{PC)+2+2n = PC Operation: (PC) + 4 -5 TOS,
Status Affected: None :; :=P16<20:1 i
Encoding: | 1116 | 6000 | nnnn | nnnn | (W) — WS,
Description: If the Zero bitis '1', then the program (Status) -» STATUSS,

wifl branch. {BSR) - BSRS

The 2's complement number ‘20" is Status Affected: None

sadedi e G Sice e PCUINE Excang

st word (k<7:0>) 1110 1108 | kokkk | kkkk,

instruction, the new address will be

PC + 2 + 2n. This instruction is then a 2nd word(k<19:8=) | 1121 [Xyokkk| kkkk | kkkkg

two-cycle instruction. Description: Subroutine call of entire 2-Mbyte
Words: 1 memory range. First, return address
. (PC + 4) is pushed onto the return
Cycles: 1(2) stack. If ‘s’ = 1, the W, Status and BSR
Q Cycle Activity: registers are also pushed into their
If Jump: respective shadow registers, WS,
a1 Qz Q3 Q4 STATUSS and BSRS. If's' = 0, no
Decod Read literal P Wiite 1o PO update ocours (default). Then, the
ecoce | nead llera rocess e o 20-bit value 'k is loaded into PC<20:1>.
n Oata CALL is a twa-cycle instruction.
No Neo No No)
operation operation operation operaticn Words: 2
If No Jump: Cycles: 2
Q1 Q2 Q3 Q4 Q Cycle Activity:
Decode Read literal Process No Q1 Q2 03 Q4
n Data operation Decode | Read literal |Push PCto | Read literal
‘k'<7:0>, stack 'K'<19:8>,
Example: HERE B2 Jump Wite to PC
Before Instruction Nat_ Noﬂ Not_ Not_
PC = address (HERE) operation operation operation operation
After Instruction
If Zero = 1 ; HERE CALL THERE, 1
PC = address (Jump) Brampte; .
If Zero = : Before Instruction
PC = address (HERE + 2) PC = address (HERE)
After Instruction
PC = address (THERE)
TOS = address (HERE + 4)
WS = W
BSRS = BSR
STATUSS= Status
DS39637A-page 376 Preliminary @ 2004 Microchip Technology Inc.

772

PIC18F2480/2580/4480/4580

CLRF Clear f CLRWDT Clear Watchdog Timer
Syntax: CLRF f{a} Syntax: CLRWDT
Operands: 0sf<255 Operands: Nene
ae(0) Operation: 000h — WOT,
Operation: 000h — f 000h_ — WDT posiscaler,
12 1 =70,
Status Aflected: Z T-+FD
Encoding: [o110 | 101a | feef | feff | Status Affected: To,PD
Description: Ciears the contents of the specified Encoding: | poao l 0000 J gcao I o100 J
register. Description: CLRWDT instruction resets the
If'a' is ‘o', the Access Bank is selected. Watchdog Timer. It also resets the
if'a’is 'L, the BSR is used to select the postscaler of the WDT. Status bits TO
GPR bank {default). and PD are sel.
If a’ is ‘0" and the extended instruction Words: 1
sel is enabled, this instruction operates Cycles: 1
in Indexed Literal Offset Addressing ' »
mode whenever f < 95 (5Fh). See Q Cycle Activity:
Section 2§.2.3 “Byte-Oriented and Q1 Q2 Q3 Q4
Bit-Oriented Instructions in !ndexed Decoda No Process No
Literal Offset Made” for details. operation Data operation
Words: 1
Cycles: 1 Example: CLRWDT
Q Cycle Activity: Before Instruction
af Q2 Q3 Q4 an ‘INDtT gt?”me’ = 7
- er Instruction
Decode R_ead . Process er!e . WDT Counter = ooh
register ‘T Data register ‘T WDOT Postscaler = 0
T0 = 1
Example; CLRF FLAG_REG, 1 PO =1
Before instruction
FLAG_REG = 5Ah
After Instruction
FLAG_REG = 00h

® 2004 Microchip Technology inc.

Preliminary

[839637A-page 377

APPENDIX H:

DATA SHEETS

773

PIC18F2480/2580/4480/4580

COMF Complement f
Syntax: COMF f{d{ah
Operands: 0<f=2255
de [0,1]
ae [0,1]
Operation: (T) — dest
Status Affected: N, Z
Encoding: [0001 | 11da | ffer | feet |
Description: The contents of register ' are
complemented. I 'd’ is 1', the resuit is
stored in W. If 'd’ is '0', the resultis
stored back in register ‘T (default).
If‘a’ is 'o’, the Access Bank is selected.
If ‘a'is 1, the BSR is used to select the
GPR bank (default).
If 'a’ is '0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f £ 95 (SFh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for defails.
Words: 1
Cycles: 1
Q Cycle Activity:
o3} Q2 Q3 Q4
Decode Read Process White to
register ‘f' Data destination
Example: COMF REG, 0, O
Before Instruction
REG = 13h
After Instruction
REG = 13h
W = ECh

CPFSEQ Compare fwith W, Skip if f=W
Syntax: CPFSEQ f{a}
Operands: 0<f<266
ae [01}
Operation: - (W),
skip if (f) = (W)
(unsigned comparison)
Status Affected: None
Encoding: j oo | eola | fEfff [£EE]
Description: Compares the contents of data memory
focation 'T to the contents of W by
performing an unsigned subtraction.
If 'f = W, then the fetched instruction is
discarded and a NOF is executed
instead, making this a two-cycle
instruction.
Ifa' is ‘o', the Access Bank is selected.
If*a' is 'e’, the BSR is used to select the
GPR bank {default).
If ‘a’ is '0’ and the extended instruction
sel is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f < 85 (SFh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented instructions in Indexed
Literal Offset Mode” for details.
Words: 1
Cycles: 12
Note: 3 cycles if skip and followed
by a 2-word instruction.
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process No
register °'f Data operation
if skip:
Q1 Q2 Q3 Q4
No No No No
operation operation operation operation
If skip and followed by 2-word instruction:
Q1 Q2 Q3 Q4
No No No No
operation operation operation operation
No No No No
operation operation operation operation
Example: HERE CPFSEQ REG, 0
NEQUAL
EQUAL
Before Instruction
PC Address = HERE
W = 7
REG = 7
After Instruction
IfREG = W
PC = Address (EQUAL}
IREG W
PC = Addtess (NEQUAL)

DS39637A-page 378

Preliminary

©® 2004 Microchip Technology fnc.

774

PIC18F2480/2580/4480/4580

CPFSGT Compare f with W, Skip if f> W CPFSLT Compare f with W, Skip if f<W
Syrtax: CPFSGT f{a} Syntax: CPFSLT f{,a}
Cperands: 0515255 Operands: 0<fs255
ae[01] ae[01)
Operation: (h - (W), Operation: () — (W),
sklp_lf N > (W)) skip if (f) < (W)
{unsigned comparison) (unsigned comparison)
Status'Aﬁectedi None Status Aflected; Nene
Encoding: | 9110] eloa | FEee] reet i Encading: | o110 I 600a l EfEf | tEEf]
Description: Compares the contents of data memaory .
location 'f’ to the contents of the W by Description: Compar?s the contents of data memory
performing an unsigned subtraction. |°°:‘t'°nl f to the Ot.)ntegm*. Oi:tw tt,y
If the contenis of 'f are greater than the periarming an un“slgne subtraction.
contents of WREG, then the fetched Ifthe contents of T are less than the
instruction is discarded and a Nop is contents of W, then the fetched
executed instead, making this a |nstfuctfoq is dlscarded_ and aNCF is
two-cycle instruction. :;cecuteld ‘_"’s‘tea:t{ making this a
Ifa'is ‘o', the Access Bank is selected. ‘ofy‘fel fhsiruction.)
lf'a'is'1’, the BSR is used to select the If ‘a, is '0‘, the Access Bank is selected.
GPR bank (default). gpaRlial I,(thde fBaSE is used to select the
If ‘a’ is ‘0’ and the extended instruction nk (default).
set is enabled, this instruction operates Words: 1
in Indexed Literal Offset Addressing Cycles: 1)
maede whenever f < 95 (S5Fh). See N _—
Section 25.2.3 “Byte-Oriented and Note: gc;cgigrzki:)sta::’:ﬁlerl‘owed
Bit-Oriented Instructions in Indexed y '
Literal Offset Mode” for details. Q Cycle Activity:
Words: 1 Q1 Q2 Q3 Q4
Cycles: 12) Cecode Rgadl ' Process No.
Note: 3 cycles if siip and followed _ register 'f Data operation
by a 2-word instruction. If skip:
Q Cycle Activity: n Q2 Q3 Q4
Q1 Q2 Q3 Q4 No No No No
Decode Read Process No operation | operation | operation | operation
register 'f Data operation if skip and followed by 2-word instruction:
if skip: Qt Q2 Q3 Q4
Q1 Q2 Q3 Q4 No Na Mo Ne
No No No No operation operation operation operation
aperation operation operation operation No No No No
If skip and followed by 2-word instruction: operation operation operation operation
n Q2 Q3 Q4
No. No. No No- Example: HERE CPFSLT REG, 1
operation gperation operation operation NLESS
No No No No LESS
operation operation operation operation Before Instruction
Example: HERE CPPSGT REG, © \':f,: - ;ddress (HERE)
NGREATER After Instruction
GREATER If REG < W
Before Instruction IF;%{EG ; Address (LESS)
PC = Address {HERE) z ;
W = 9 PC = Address (NLESS)
After Instruction
IfREG > W
PC = Address {GREATER)
IFREG < W
PC = Address (NGREATER!

® 2004 Microchip Technology Inc.

Preliminary

DS39637A-page 379

APPENDIX H: DATA SHEETS

775

PIC18F2480/2580/4480/4580

DAW Decimal Adjust W Register DECF Decrement f

Syntax: DAW Syntax: DECF f{d{a}}

Operands: None Operands: 0<f<255

Operation: If W<3:0> >9] or [DC = 1] then del0]
(W<3:0>) + 6 — W<3:0>: ae [0.1]
else Operation: H =1 — dest
(W<3:07) - W<3.0> Status Aflected: C, DC, N, OV, Z
If W<7:4> >9] or [C = 1] then Encoding: | G000 l Oida 1 EEEE I fEEE I
(W<T7:4>) + B — W<T7:4>, Description: Decrement register 'f. if 'd' is *0’, the
C=1 result is stored in W. If 'd’ is '1', the
else result is stered back in register ‘F
(W<T7:4>) — Wi<7:4>, (default).

Satus Affected: [If 'a’ is '0’, the Access Bank is selected.

Encoding: I 9000 1 0000 1 0000 ! 0111] If'a'is 1, the BSR is used to select the

GPR bank (default).

Description: Daw ;i:j U?QE;h&:ig::’l'izi: ;:Idu;;: :r,two If'a'is ‘0’ and the extended instruction
resuring rom o set is enabled, this instruction operates
variables (each in packed BCD format) in Indexed Literal Offset Addressing
and produces a correct packed BCD mode whenever f < 85 (5Fh). See
resutt. Section 25.2.3 “Byte-Oriented and

Words: 1 Bit-Oriented Instructions in Indexed

. Literal Offset Mode™ for details.

Cycles: 1

Q Cycle Activity: Words: 1

Q1 Q2 Q3 Q4 Cycles: !
Cecode Read Process Write QG Cycle Activity:
register W Data W Q1 Q2 Q3 Q4
Example 1; Decode Read Process Wite to
DAW register 'f Data destination
Before Instruction
g\{ = 85h Example: DECF CNT, 1, O
ne = 0 Before instruction
After tnstruction CNT = 01h
W = 05h Z =0
c = 1 After Instruction
D = 0 CNT = 00h
Example 2: 2z = 1
Before Instruction
W = CEh
C = 0
(o] = 0
After Instruction
w = 34h
c = 1
ne = 0
DS39637A-page 380 Preliminary @ 2004 Microchip Technology Inc.

776

PIC18F2480/2580/4480/4580

DECFSZ Decrement f, Skip if 0 DCFSNZ Decrement f, Skip if not 0
Syntax: DECFSZ f{d{ah Syntax; DCFSNZ f{d{a}}
Operands: 0<fs255 Operands: 0<{<255
d e [0,1] de [01]
ae[D41] ae [01]
Oparalion: {f) — 1 -» dest, Operation: {f) ~ 1 - dest,
skip if result = o skip if result = o
Status Affected: None Status Affected: Nane
Encoding: | o010 [11da | feer [erer | Encoding: | o100 | 11da | f£ref | feer i
Description: The contents of register 'f are Description: The contents of register 'f’ are
decremenied. If 'd’ is '0’, the resuit is decremented. If 'd’"is ‘0, the result is
placedin W. If'd’ is '1', the resultis placed in W. If ‘d’ is '1’, the result is
placed back in register 'f' {default). placed back in register 'f' (default).
If the result is 'o’, the nexi instruction If the result is not ‘0, the next
which Is already fetched is discarded instruction which is already fetched is
and a NOP is executed instead, making discarded and a NOP is executed
it a twa-cycle instruction. instead, making it a two-cycle
If 'a'is '0', the Access Bank is selected. instruction.
If'a'is ‘2’ the BSR is used to salect the if'a'is ‘o', the Access Bank is selected.
GPR bank (default}. if'a’is'1’, the BSR is used to select the
If 'a’is ‘o' and the extended instruction GPR bank (default).
set is enabled, this instruction operates H'a'is o' and the extended instruction
in Indexed Literal Offset Addressing set is enabled, this instruction operates
mode whenever f < 85 (5Fh). See in indexed Literal Offset Addressing
Section 25.2.3 “"Byte-Oriented and mode whenever f < 95 (5Fh). See
Bit-Oriented Instructions in Indexed Section 26.2.3 “Byte-Oriented and
Literal Offset Mode” for details. Bit-Oriented Instructions in Indexed
Words: 1 Literal Offset Mode” for details.
Cycles: 12) Words: L
Note: 3cycles if skip and followed Cycles: 1(2)
by a 2.word instruction. Note: 3 cycles if skip and followed
Q Cycle Activity: by a 2-word instruction.
o1 Q2 Q3 Q4 Q Cycie Activity:
Decade Read Process Wite to Q1 Q2 Q3 Q4
register 'f Data destination Decode Read Process Write to
If skip: register *f' Data destination
Qi Q2 Q3 Q4 If skip:
No No No Na Q1 Q2 Q3 Q4
operation operation operation operation No No No No
H skip and followed by 2-word instrugtion: operation | operation j operation | operation
o1 Q2 Q3 Q4 If skip and followed by 2-word instruction:
No No No No a1 Q2 Q3 Q4
operation operation operation operation No No No No
No No No No operation operation operation operation
operation operation operation operation No No No No
operation aperation operation operation
Example; HERE DECFSZ CNT, 1, 1
GOTO LOOP Example; HERE DCFSKRZ TEMP, 1, 0
CONTINUE ZERC
Before Instruction) WZERO
pe = Address (HERE) Before Instruction
After Instruction TEMP = 7
CNT = ONT -1 After Instruction
ECNT = ; TEMP = TEMP -1,
PC = Address (CONTINUE) fTEMP = 0
IFCNT = O PC = Address (ZERO)
PC = Address (HERE + 2) if TEMP * ;
FC = Address (NZERO)

® 2004 Microchip Technology Inc.

Prefliminary

DS39637A-page 381

APPENDIX H: DATA SHEETS

777

PIC18F2480/2580/4480/4580

GOTO Unconditional Branch INCF Increment f
Syntax: GOTO k Syntax: INCF f{d{a}}
Operands. 0 <k < 1048575 Qperands; 01255
Operation: k — PC<20:1> de[0.1]
Status A \ ae[0,1]
4 flected: ne
als ° Qperation: i +1 > dest
Encoding:
g Slatus Affected: C. DG, N, OV, Z
18t word (k<7:0=) 1110 1111 | kokkk | kkkk,)
2nd word(k=19:8~) 1111 | ko kkk | kkkk Kkkkk, Encoding: i Q010 | 10da | EfEf 1 fEEF I
Description: GOTO aliows an unconditional branch Description: The coritents of register 'f are
anywhere within entire mcremgnted. I!‘ c‘!'|s 0' ,the resurt'ls
2-Mbyte memory range. The 20-bit placed in W. If 'd’ is '1’, the result is
value 'k’ is loaded into PC<20:1>. placed back in register °f (defaul).
GOTO is always a two-cycle H'a is '0', the Access Bank is selecled.
instruction. if'a’is ‘1", the BSR is used to select the
It).
Words: o GF‘I?RI barfk {default) ‘ '
If ‘@’ is ‘0" and the extended instruction
Cycles: 2 set is enabled, this instruction operates
Q Cyele Activity: in Indexed Literal Offset Addressing
mode whenever f < 95 (GFh). See
el °_2 a3 Qf‘ Section 26.2.3 “Byte-Oriented and
Decode R:e'ad !'teml No Read Illieral Bit-Oriented Instructions in Indexed
k<7:0> | operation | 'K'<19:8>, Literal Offset Mode” for details.
Wite to PC)
No No No Na Words: !
operation operation operation operation Cycles: 1
Q Cycle Activity:
Example: GOTO THERE iy Q2 Q3 Q4
After Instruction Decode Read Process Write to
PC = Address (THERE} register ‘f Data destination
Example: INCF CNT, 1, ©
Before Instructicn
CNT =z FFh
pa = 0
c = 2
pc = 7
After Instruction
CNT = 0Oh
Z = 1
c = 4
DC = 1
S
DS39637A-page 382 Preliminary ® 2004 Microchip Technology inc.

778

PIC18F2480/2580/4480/4580

INCFSZ2 Increment f, Skip if 0 INFSNZ Increment f, Skip if not 0
Syntax: INCFSZ 1{d{a}} Syntax: INFSNZ §{d{a}}
Operands: 0sfs255 Operands: 01255
de[01] de [09]
ae[01] ae 0]
Operation: {f) + 1 — dest, Operation: (I?(.+ 1f - d;st,
skip ifresult = ¢ skip i result = 0
Status Aflected: None Status Aflected: None
! Encoding: | o100 | 1oda | f£€£f | feee |
Encoding: | o011 | 11da | fref | geef | i _
o —— Description: The contents of register ' are
Description: The contents of register T are incremented, If 'd’ is '0’, the result is
incremented. If 'd’is ‘0’, the result is placed in W. If 'd" is ‘1", the result is
placedin W. If'd'is ‘1, the result is placed back in register ' (defauft).
placed back in register 'F' (default). If the resuit is not ‘o', the next
If the result is "¢, the next instruction instruction which is already fetched is
which is already fetched is discarded discarded and a NOE is executed
and a Nop is executed instead, making instead, making it a two-cycle
it & two-cycle instruction. instruction.
If'a'is '0’, the Access Bank is selected, If ‘@' is ‘0", the Access Bank is selected.
if'a'is‘1’, the BSR is used fo select the If'a’is'1’, the BSR is used to select the
GPR bank (default). GPR bank (default).
If ‘a’is ‘0" and the extended instruction If ‘a'is ‘0’ and the extended instruction
set is enabled, this mstruction operales set is enabled, this instruction operates
in Indexed Literal Offset Addressing in Indexed Literal Offset Addressing
mode whenever f < 85 (SFh). See mode whenever f < 95 (SFh). See
Section 26.2.3 “Byte-Oriented and Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed Bit-Oriented Instructions in Indexed
Literal Offset Mode" for details. Literal Offset Mode™ for details.
Words: 1 Words: 1
Cycles: 1{2) Cycles: 1(2)
Note: 3 cycles if skip and followed Note: 3cycles if skip and followed
by a 2-word instruction. by a 2-word instruction.
Q Cycle Activity: Q Cycle Activity:
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Decode Read Process Viite to Decode Read Process Wite to
register *f' Data destination register 'F Data destination
If skip: If skip:
o] Q2 Q3 Q4 Q1 Q2 Q3 Q4
No Na No No No No No No
operation operation operation operation operation operation operation operation
If skip and followed by 2-word instruction: If skip and followed by 2-word instruction:
Q1 Q2 Q3 Q4 ™ Q2 Q3 Q4
No No No No No No No No
operation | operation | operation | operation operation | operation | operatien | operation
No No No No No No No No
operation operation operation operation operation operation operation operation
Example: HERE INCFSZ CNT, 1, 0 Example: HERE INFSNZ REG, 1, 0
NZERO ZERO
ZERQ NZERO
Before Instruction Before Instruction
PC = Address (HERE) PG = Address (HERE)
After instruction After Instruction
CNT = CNT+1 REG = REG+1
HCNT = O HFREG =
PC = Address (ZERO)} PC = Address (NZERO)
WCNT = O EREG = A
PC = Address (NZERG) PG = Address (ZERO!
@ 2004 Microchip Technology inc. Preliminary DS39637A-page 383

APPENDIX H: DATA SHEETS

779

PIC18F2480/2580/4480/4580

IORLW inclusive OR Literal with W IORWF Inclusive OR W with f
Syntax: IORLW Kk Syntax: ICRWF f{d{a}]
Operands: D<k<288 Operands: D<f<255
Operation: (W) .OR. k - W :E %gH
e {0,
Status Affected: N, Z
. ect Operation: (W) .OR. (f) > dest
Encoding: 0000 kkk
coding [| 2003 | sk | ok | Status Aflected: N, Z
Description: The contenis of W are ORed with the dina:
eight-bit literal *k'. The resutt is placed Encoding: [[ooox [ooda [erse | seee |
inW. Description: inclusive OR W with register 'f. If 'd’is
Words: 1 ‘o', the res_ult is placed In_W. If _‘d' is'1,
the result is placed back in register 'f
Cycles: 1 (default).
Q Cycle Activity: If ‘@' is ‘o', the Access Bank is selected.
a1 Q2 Q3 Q4 If ‘al:ais ‘1', the BSR is used to select the
Decode Read Process White to W GP .bank {default). .
literal ‘K" Data If ‘a'is ‘o’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
Example; IORLW 35n mode whenever f < 95 (SFh). See
Before Instruction Section 26.2.3 "Byte-Oriented and
W = 9Ah Bit-Oriented Instructions in Indexed
After Instruction Literal Offset Mode” for details.
w = BFh Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process \Write to
register ‘7 Data destination
Example: IORWF RESULT, 0, 1
Before Instruction
RESULT = 13h
W = 9h
After Instruction
RESULT = 13h
W = 893h
D$39637A-page 384 Preliminary © 2004 Microchip Technology Inc.

780

PIC18F2480/2580/4480/4580

LFSR Load FSR MOVF Move f
Syntax: LFSR {k Syntax; MOVF f{d{a}}
Operands: 0=sf<s2 Operands: 0<f<255
0 < k < 4095 de [01]
Operation: k —» FSRF ae 0]
Status Affected: None Operation: f — dest
Encoding: 1110 | 1110 | GOff |k, ,kkk Status Affected: N.Z
1111 0000 | kykkk | kkkk Encoding: ‘ 0101] Goda i fEEF i fEEE]
Description: The 12-bit literal 'K’ is loaded into the Description: The contents of register ' are movedto
file select register pointed ta by ‘f’. a destination dependent upon the
ds: 2 status of 'd”. If 'd' is ‘0, the result is
Words placed in W. If 'd’ is ‘1", the result is
Cycles: 2 placed back in register ‘f' (default).
Q Cycle Activity: Location ‘f can be anywhere in the
o Q2 as a4 |2f56‘by‘e b:hnkA Bank lected
- . ‘a' is ‘0, the Access Bank is selected.
Decode R?;dw:g‘ga; P’g:fa"”s m‘g::‘fk, If'a’is 1", the BSR is used o sefect the
MSB to GPR bank (default),
FSRfH if‘a’ is ‘o’ and the extended instruction
- — set is enabled, this instruction operates
Decode R?:,d ng;ral Prg;teass k“ﬁte;;;r?: in Indexed Literal Offset Addressing
mode whenever f < 85 (SFh). See
Section 25.2.3 “Byte-Oriented and
Example: LPSR 2, 3ABh Bit-Oriented Instructions in Indexed
Afer Instruction Literal Offset Mode” for detaiis.
FSR2H = 03h Words: 1
FSR2L = ABh
Cycles: 1
Q Cycle Activity:
o} Q2 Q3 Q4
Decode Read Process Write W
register ‘f' Data
Example: MOVF REG, 0, 0
Before instruction
REG = 22h
w = FFh
After Instruction
REG = 22h
w = 2Zh
© 2004 Microchip Technology Ing, Preliminary DS39637A-page 3685

APPENDIX H: DATA SHEETS

781

PIC18F2480/2580/4480/4580

MOVFF Move fto f MOvLB Move Literal to Low Nibble in BSR
Syntax: MOVFF ffy Syntax: MOVLW k
Operands: 0 < fys 4085 Operands: 0<k<255
0 < fy < 4095 Operation: k — BSR
Operation: (fs) = fa Status Affected: None
Status Affected: None Encoding: [o000 [coo1 | kwik | kkik |
Encoding: Description. The eight-bit iterai 'k’ is loaded into the
1st word (source} 1100 | £££f | FEff | ffff, Bank Select Register (BSR). The value
2nd word {destin.) 1111 | £££€ | £LIf | £EEfy of BSR<7:4> always remains ‘0",
Description: The contents of source register ;' are regardless of the value of ky'k.
moved to destination register ‘f,. Words: 1
Location of source g’ can be anywhere Cycles: 1
in the 4096-byte data space (000h to) »
FFFh) and location of destination 'fy’ Q Cycle Activity:
can also be anywhere from 00Ch to o1 Q2 Q3 Q4
FFFh. Decode Read Process | Write literal
Either spurce or destination can be W fiteral 'k’ Data ‘' to BSR
{a useful special situation).
MOVFF is particularly useful for Example: MOVLE 5
transferring a data memory jocationto a i
peripheral register {such as the transmit Before Instruction
buffer or an KO port). BSR Register = 02h
The MOVFF instruction cannot use the Mefgg’g“;m," - osh
PCL, TOSU, TOSH or TOSL as the egister =
destination register
\Words: 2
Cycles: 2(3)
Q Cycle Activity:
[} Q2 Q3 Q4
Decode Read Process No
register 'f' Data operation
{sic)
Decode Neo No Wiite
operation operation register 'f
No dummy {dest)
read
Example: MOVFF REG1l, REG2
Before Instruction
REG1 = 33h
REG2 = 11h
After Instruction
REG1 = 33h
REG2 = 33h
DS39637A-page 386 Preliminary @ 2004 Microchip Technology inc.

782

PIC18F2480/2580/4480/4580

MOVLW Move Literal to W MOVWF Move Wto f
Syntax: MOVLW k Syntax: MOVWF f{a}
Operands: 0<k< 255 Operands: 0<f<255
Operation: k=W ae[01]
Status Affected: None Operation: W) > f
Encoding: i 0000] 1110 | Kkkk | kkkk | Status Affected: None
Description: The eight-bit literal 'k’ is loaded into W. Encoding: | o110 I 111a ‘ i | £efe I
Words: 1 Description: Move data from W to register °'f.
' Location *f ¢an be anywhere in the
Cycles: 1 256-byte bank.
G Cycle Activity: if'a’is ‘0", the Access Bank is selected.
ot oz Q3 Q4 if'a’is '1’, the BSR is used to select the
Decode Read Process Write to W GPR bank (default).

Iteral 'k Data i 'a'is ‘0’ and the extended instruction
set is enabled, this instruction operates
in indexed Literal Offset Addressing

Example: MOVLW 5ah mode whenever f < 95 (5Fh). See
Afer Instruction Section 25.2.3 “Byte-Oriented and
W = BAh Bit-Oriented instructions in Indexed
Literal Offset Mode” for details.
Words: 1
Cycies: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Write
register 'f' Data register ‘7
Example: MOVWF REG, 0
Before Instructicn
W = 4Fh
REG = FFh
After Instruction
W = 4Fh
REG = 4Fh
@ 2004 Microchip Technology Inc. Preliminary DS38637A-page 387

APPENDIX H: DATA SHEETS 783

PIC18F2480/2580/4480/4580

MULWF

Multiply W with f

MULLW Multiply Literal with W
Syntax: MULLW k
Operands: 0sk<285
Operation: (W) x k -+ PRODH:PRODL
Status Affected: None
Encoding: 1 0000 | 1101 l kkkk 1 kkkk]
Description: An unsigned muttiplication is carried
out between the contents of Wand the
8-bit Iiteral k', The 16-bit result is
placed in the PRODH:PRODL register
pair. PRODH contains the high byte.
Wis unchanged.
None of the status flags are affected.
Note that neither overflow nor carry is
possible in this cperation. A zeto result
is possible but not detected.
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Q2 Q3 Q4
Decode Read Process Write
literal ‘I’ Data registers
PRODH:
PRODL
Example. MULLW 0C4h
Before Instruction
wW = E2h
PRODH = 7
PRODL = 7
After Instruction
w = E2h
PRODH = ADh
PRODL = 08h

Syntax:
Operands:

Operation:
Status Affected:
Encoding:
Description:

Words:

Cycles:

Q Cycie Activity:
Q1

MULWF f{a}

02f<255
ac[01]

(W) x {f) = PRODH:PRODL
MNone

| 0000 | oola | frfs I EEFE I

An unsigned multipiication is carried
out hetween the contents of Wand the
register file location ‘f. The 16-hit
result is stored in the PRODH:PRODL.
register pair. PRODH contains the
high byte. Both W and 'f are
unchanged.

None of the status flags are affected.

Note that neither overflow nor cany is
possible in this operation. A zero
result is possible but not detected.
If'a'is "0, the Access Bank is
selected. If '2' is '1', the BSR is used
{0 select the GPR bank (defauit).

if ‘@’ is ‘0’ and the extended
instruction set is enabled, this
instruction operates in Indexed Literal
Offset Addressing mode whenever
f< 95 (5Fh). See Section 26.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.

1
1

a2 Q3 Q4

Decode

register ‘f Data

Read Process Wite

registers
PRODH:
PRODL

Example;

MULWF REG, 1

Before Instruction

W
REG

PRODH
PRODL
After Instruction

W
REG

PRODH
PRODL

Cdh
85h
5
2

Cdh
BSh
8Ah
94dh

wiwun

D539637A-page 368

Preliminary

© 2004 Microchip Technology Inc.

784

PIC18F2480/2580/4480/4580

NEGF Negate f NOP No Operation
Syntax: NEGF f{a) Syntex: NOP
Operands: 0=<f<255 Operands: None
a_e [©.1 Operation: No operation
Operation: (H+1-f Status Affected: None
Status Affected: N,OV.C.DC, 2 Encoding: 0000 | 0000 | ocoo | 6060
Encoding: l 6110 { 110a | Ifff] ffff | 1111 poved XEXX XXXX
Description: Location ‘F is negated using two's Description: No operation.
complement. The resitilt is placed in the Words: 1
data memaory location 'f. '
If*a'is ‘0", the Access Bank is selected. Cycles: L
If'a'is ‘L', the BSR is used to select the Q Cycle Activity.
GPR bank (default). Ot Q2 a3 Q4
If ‘a" is ‘0’ and the extended instruction Decode No No No
set is enabled, this instruction operates operation operation operation
in Indexed Literal Offsel Addressing
mode whenever f <95 (5Fh). See
Section 25.2.3 “Byte-Oriented and Example:
Bit-Oriented Instructions in Indexed None.
Literal Offset Mode” for details.
Words: 1
Cycles: 1
Q Cycle Activity:
Q1 Qz Q3 Q4
Decode Read Process Wiite
register 'f Data register 'f'
Example: NEGF REG, 1
Before Instruction
REG = 0011 1o01lc {3Ah]
After Instruction
REG = 1100 0110 |C6h]
® 2004 Microchip Technology Inc. Preliminary DS39637A-page 389

APPENDIX H: DATA SHEETS

785

PIC18F2480/2580/4480/4580

POP Pop Top of Return Stack PUSH Push Top of Return Stack
Syntax: POP Syntax: PUSH
Operands: None Operands: None
Operation: {TOS) — bit bucket Operation: (PC+2) - TOS
Status Affacted: None Status Affected: None
Encoding: I g9900 | 0000] 0000 [0110 | Encoding: [0000 l 0600 1 0000 | 0101 |
Description: The TOS value is pulled off the return Description: The PC + 2 is pushed onto the top of
stack and is discarded. The TOS value the return stack. The previous TOS
then becomes the previous value that value is pushed down on the stack.
was pushed onto the return stack. This instruction allows imptementing &
This instruction is provided to enable software stack by modifying TOS and
the user to properly manage the return then pushing it onto the return stack.
stack to incorporate a software stack. Words: 1
Words: 1 Cycles: 1
Cycles: ! Q Cycle Activity:
Q Cycle Activity: ot Q2 a3 Q4
at Q2 Q3 Q4 Decode PUSH Ne No
Cecode No POP TOS Na PC + 2onto | operation operation
operation value operation return stack
Example: POP Example: PUSH
GOTO NEW Before instruction
Befare Instruction TOS = 345Ah
TOS = 0031A2h FC = 0124n
Stack (1 level down) = 014332h
After Instruction
After Instruction PC = 0126h
TOS = 014332%h TOS = 0126h
PC = NEW Stack (1 level down) = 345Ah
DS39637A-page 380 Preliminary © 2004 Microchip Technoiogy Inc.

786

PIC18F2480/2580/4480/4580

RCALL Relative Call RESET Reset
Syntax: RCALL n Syntax: RESET
Operands: -1024 <n <1023 Operands. None
Operation: (PC) +2 = TOS, Operation: Reset all registers and flags that are
(PC}+2+2n—=PC affected by a MCLR Reset.
Status Affected: None Status Affected: All
Encoding: [1101 | 1nnn | nnon | noon | Encoding: [o000 [o000 [1111 | 1311 |
Description: Subroutine call with a jump up ta 1K Description: This instruction provides a way to
from the current location. First, return execute a MCLR Reset in software.
address (PC + 2) is pushed onte the Words: 1
stack. Then, add the 2's complement ’
number '2n’ to the PC. Since the PC will Cycles: 1
have incremented 1o fetch the next Q Cycle Activity:
instruction, the new address wiil be
PC + 2 + 2n. This instruction is a o Q2 a3 Q4
two-cycle instruction. Decode Start No No
Reset operation operation
Words: 1
Cycles: 2 Example: RESET
Q Cycle Activity: After Instruction
Q1 Q2 Q3 Q4 Registers = Reset Value
Decode | Readlteral | Process |Wite to PC Flags™ = ResetValue
n Data
PUSH PC to
stack
No No No No
operation operation operation operation
Example: HERE RCALL Jump
Before instruction
PC = Address (HERE)
After Instruction
PC = Address (Jump)
TOS= Address (HERE + 2)
® 2004 Microchip Technology Inc. Preliminary DS39637A-page 391

APPENDIX H: DATA SHEETS

787

PIC18F2480/2580/4480/4580

RETFIE Return from Interrupt RETLW Return Literal to W
Syntax: RETFIE ({s} Syntax: RETLW k
Operands: s & [01} Operands: 0<k<255
Operation; (T08) —» PC, Operation: k=W,
1 — GIE/GIEH or PEIE/GIEL, (TOS) —» PC,
ifs=1 PCLATU, PCLATH are unchanged
(WS} — W, Status Affected: None
(STATUSS) - Status, i '
(BSRS) — BSR, Encoding: | 0000 I 1100 I kkkk | kkkk |
PCLATU, PCLATH are unchanged. Description: W is loaded with the eight-bit literal 'K’
Status Affected: GIE/GIEH, PEIE/GIEL. The program counter is loaded From the
o top of the stack (the return address).
Encoding: | o000 | 0000 | 0001 | oaos] The high address latch (PCLATH)
Description: Return from Interrupt. Stack s popped remains unchanged.
and Top-of-Stack (TOS) is loaded into Words: 1
the PC. Interrupts are enabled by)
setting either the high or low priority Cycles: 2
global interrupt enabie bit. If 's' = 1, the Q Cycle Activity:
contents of the shadow registers, WS,
STATUSS and BSRS, are loaded into o a2 Qs Qa4
their corresponding registers, W, Decode _Reac‘l , Process POP PC
Status and BSR. if's' = 0, no update of literal k Data from stack,
these registers occurs {default). Write 1o W
. No Ne No No
Words: ! operation operation operation operation
Cycles: 2
Q Cycle Activity: Exarnple;
Q1 Q2 Q3 Q4 CALL TABLE ; W contains table
Decode No No POP PC ; offset value
operation operation | from stack i W now has
Set GIEH or i table value
GIEL :
TABLE
No No No No
,) . ADDWF PCL ; W= offset
operation operation operation aperation RETLH ko ; Begin table
RETLW k1 ;
Example: RETFIE 1 :
After interrupt :
PC = TOS RETLW kn ; End of table
W = Before Insteucti
BSR = BSRS P
Status = STATUSS)
GIE/GIEH, PEIE/GIEL = 1 After Instruction
W = value of kn
DS39637A-page 392 Preliminary ® 2004 Microchip Technology Inc.

788

PIC18F2480/2580/4480/4580

RETURN Return from Subroutine RLCF Rotate Left f through Carry
Syntax: RETURN {s} Syntax: RLCF f{d{a}}
Operands: se [0,1] Operands: 0<f<255
Operation: (TOS) - PC. de[01]
Fs=1 ae [01]
{WS) = W, Operation: {fen>) — dest<n + 1>,
(STATUSS) - Status, {f<7>) = C,
(BSRS) -» BSR, {C) — dest<0>
PCLATU, PCLATH are unchanged Status Affected: N Z
Status Affected: None Enceding: ’ 00l | o1da | fEff | fEff |
Encoding: I 0009 | 0009 l ool ‘ po1s I Gescription: The contents of register ‘T are rotated
Description: Return from subroutine. The stack is one bit to the left through the Carry
popped and the top of the stack {TOS) flag. If 'd'is ‘o, the result is placed in
is lvaded into the program counter. If W, If'd' is "2, the result is stored back
's'= 1, the contents of the shadow in register 'f {default).
registers, W3, STATUSS and BSRS, H'a'is '0', the Access Bank is
are Joaded into their corresponding selected. If 'a’is *1', the BSR is used to
registers, W, Status and BSR._lf select the GPR bank (default).
s =0, o ‘f‘:"a‘e ofthese registers If'a’ Is 0" and the extended instruction
occurs {default). set is enabled, this instruction

Words: 1 aperates in Indexed Literal Offset
Addressing mode whenaver

Cycles: 2
y N <95 (SFh). See Section 26.2.3
Q Cycle Activity: “Byte-Oriented and Bit-Oriented
Q1 Q2 Q3 Q4 Instructions in Indexed Literal Ofiset
Decode No Process POP PC Mode” for details,
operation Data from stack
No hNo No No
operation operation operation operation Words: 1
Cycles: 1
Q Cycle Activity:
Example; RETURN
Q1 Q2 Q3 Q4
Aftet ;I::;e HBPF!O S Decode Read Process Virite to
- register T Data destination
Example: RLCF REG, ¢, ©
Before Instruction
REG = 1110 0110
c = 0
After Instruction
REG = 1110 0110
W = 1100 1100
c = 1
© 2004 Micrechip Technology Inc. Pre!iminary DS39637A-page 393

APPENDIX H: DATA SHEETS 789

PIC18F2480/2580/4480/4580

RLNCF Rotate Left f (No Carry) RRCF Rotate Right f through Carry
Syntax: RLNCF f{d{a}} Syntax: RRCF f{d{ah}
Operands: 0<f<255 Operands: 0sfs255
de [0,1) de [0,]
ae [01) a e [0,1]
Operation: (f<n=) — dest<n + 1>, Operation: (f<n>) - dest<n — 1>,
(f<7>) ~» dest<0> {f<0>) » C,
Status Aftected: N,Z {C} — dest<7>
Encoding: [000 | o1da | ££ef | £rrs | Status Afiected: C.NZ
Desctiption: The contents of register 'f are rotated Encoding: | 901t I 90da I res i ffet |
one bit to the left. If ‘d' is ‘0, the result Description: The contents of register ‘f are rotated
isplaced in W. If 'd' is *1', the result is ane bit {o the right through the Carry
stored back in register 'f' (default). flag. If'd’ is ‘0, the result is placed in W.
If‘a'is ‘o', the Access Bank is selected. If'd"ls 1, the result is placed back in
If‘a’is ‘1, the BSR is used fo select the register 'f' (default).
GPR bank {default). If 'a’ is ‘0’, the Access Bank is selected.
If‘a’is ‘o' and the extended instruction If ‘&’ is*1’, the BSR is used to select the
set Is enabled, this instruction operates GPR bank (default).
in Indexed Literal Offset Addressing If ‘a'is ‘0" and the extended instruction
mode whenever f < 86 (5Fh). See set is enabled, this instruction operates
Section 26.2.3 “Byte-Oriented and in Indexed Literal Offset Addressing
Bit-Oriented instructions in Indexed mode whenever f < 95 (5Fh). See
Literal Offset Mode” for details. Section 26.2,3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
r“_] Literal Offset Mode” for details,
Words: 1
Cycles: 1
. Words: 1
Q Cycle Activity: tos: |
Q1 Q2 a3 a4 Cycles:
Decode Read Process Write to Q Cyele Activity:
register T Data destination [0} Q2 Q3 Q4
Decode Read Process VWrite to
Example; RLNCF REG, 1, © register ‘'f Data destination
Before Instruction
REG = 1010 1011 Example: RECF REG, 0, 0
After Instruction Before Instruction
REG = 0101 011l REG = 1110 0110
c = 0
After Instruction
REG #1110 0110
W = 0111 09011
C = 0
DS39637A-page 394 Preliminary © 2004 Microchip Technaology Inc.

790

PIC18F2480/2580/4480/4580

RRNCF Rotate Right f (No Carry) SETF Setf

Syntax: RRNCF f{d{a} Syntax: SETF f{a}

Cperands: 0<ic258 Operands: 0<f<255
de[01] ae [01]
as[01] Qperation; FFh = f

Operation; (f<n>} - desten — 1> Status Affected: None
{f<0>) — dest<7> Encodi

: 100 frfff Ffff

Staius Affected: N, Z neoding I 0119 [2 ! l l

A Description: The contents of the specified register

Encoding: | o100 | ooda | free | eref | are setio FFh.

Description: The contents of register ‘f' are rotated If‘a’' is ‘o', the Access Bank is selected.
one bit to the right. If ‘d’ Is ‘o', the result Ifa'is'1’, the BSR is used to select the
is placed in W. if ‘d"is ‘1’, the result is GPR bank {default).
placed back in register 'f (deﬁfmm' If‘a’is ‘o' and the extended instruction
If'a’is 0", the Access Bank wili be set is enabled, this instruction operales
selected, overriding the BSR value. Jf'a’ in Indexed Literal Offset Addressing
is '1’, then the bank will be selected as mode whenever f < 85 (SFh). See
per the BER value (default}. Section 25.2.3 “Byte-Oriented and
If ‘a"is ‘0’ and the extended instruction Bit-Oriented Instructions in Indexed
set is enabled, this instruction: operates Literal Offset Mode” for detalls.
in Indexed Literal Offset Addressing Words: 1
mode whenever [< 85 (5Fh). See)

Section 25.2.3 “Byte-Oriented and Cycles: 1
Bit-Criented Instructions in Indexed Q Cycle Activity:
Literal Offset Mode"” for details. il a2 Q3 Q4
|—> Decode Read Process White
register 'f' Data register '
Words: 1
Cycles: 1 Example: SETF REG, 1
Q Cycle Activity: Before Instruction
Q1 Q2 Q3 Q4 REG = 5Ah
Decode Read Process Wite to After 'IQnEsgudion = FFh
register ' Data destination -
Example 1; RENCF REG, 1, 0
Before Instruction
REG = 1101 0111
After instruction
REG = 1110 1011l
mple 2 RRNCF REQ, 0, ¢
Before Instruction
w = 7
REG = 1101 0111
After Instruction
W = 1110 1011
REG = 1101 0111
© 2004 Microchip Technology Inc. Prefiminary DS39637A-page 395

APPENDIX H: DATA SHEETS

791

PIC18F2480/2580/4480/4580

SLEEP Enter Sleep mode SUBFWB Subtract f from W with Borrow
Syntax; SLEEP Syntax: SUBFWB f{d{a}}
Operands: None Operands: 0515255
Operation: 00h — WDT, de Ig'::i
0 —» WDT postscaler, aePI
1= T0Q, Operation. (W) — () — (C) — dest
0—PD Status Affected: N, OV, C, DC. Z
Status Affected: T0.PD Encoding: [o101 [o1da [fref | eees |
Encoding: i 0oco | Booa | 9000 I__(mll l Description: Subtract register ' and Carry flag
Description: The Power-Down status bit (FD) is (borrow) from W (2's complement
cleared. The Time-out status bit (TO) method). If 'd’is ‘0, the result is stored
is set. Watchdog Timer and its inW. If'd"is '1’, the result is stored in
postscaler are cleared. register ‘' (defauit).
The processor is put into Sleep mode H'a'is'0, the Access Bank is selected.
with the oscillator stopped. H'a'is'l', the BSR is used to selectthe
Words: 1 GPR bank (default).

If ‘@’ is ‘0’ and the extended instruction

Cyctes: 1 set is enabled, this instruction operates
G Cycle Activity: in indexed Literal Offset Addressing
a1 az 03 Q4 mode whenever f < 95 (5Fh). See
Decod No Proc Coto Section 26.2.3 “Byte-Oriented and
e operation D af:s Slee Bit-Oriented Instructions in Indexed
P P Literal Offset Mode™ for details.
Words: 1
Example: SLEEP
. Cycles: 1
Before tnstruction
TOo = 7 Q Cycle Activity:
PO = 7 [*3] Q2 Q3 Q4
After Instruction Decode Read Process Write to
TO = ¢ register 'f Data destination
PD = 0
Example 1; SUBFWEB REG, 1, 0
T 1EWDT causes wake-up, this bit is cleared. Before Instruction
REG = 3
w = 2
Cc = 1
After Instruction
REG = FF
W = 2
C = 0
Z = 0
N = 1 ;resulfis negative
Example 2. SUBFWB EEG, 0, 0
Before Instruction
REG = 2
w = 3
c = 1
After Instruction
REG = 2
w = 3
C = 1
Z = 0
M = 0 ;resultis positive
Example 3; SUBFWB REG, 1, 0
Before Instruction
REG = 1
W = 2
o] = 0
After Instruction
REG = 0
W = 2
C = 1
Z = 1 ;resultiszero
N = 0
DS39637A-page 396 Preliminary ® 2004 Microchip Technology Inc.

792

PIC18F2480/2580/4480/4580

SuBLW Subtract W from Literal SUBWF Subtract W from f
Syntax: SUBLW k Syntax: SUBWF f{d{al
Operands: 0<kg255 Operands: 05f<255
- de [0,1]
tion: Ko
atus cted: ,OV,C,.DC, Z .
Encodi Operation: (f) — (W) — dest
: agoo 000 kkkk kkkk
neoding | | 1000 | I | Status Affected: N, OV, C, DG, Z
Descriptien: Wis subtracted from the eight-bit s
literal 'k'. The result is placed in W. Encoding: l o101 [i1da I ferf | £eee j
. Description: Subtract W from register 'f' (2's
Words: 1 P
complement method). If 'd" is ‘o', the
Cycles: 1 resutt is stored In W. If 'd' is '1", the
Q Cycle Activity: result is stored back in register 'f’
al a2 s a4 :f‘ef&'mi‘t); the A Bank is selected
: a'is '0’, the Access Bank is selected.
Decode mz::ﬁk. Prg:f:s Wiite to W if‘a’is 'z’ the BSR is used lo select the
GPR bank (default).
Example 1: SUBLW 02h if‘a’ is ‘0’ and the extended instruction
Before Ingtructi set is enabied, this instruction operates
orvev net |:n o1h in Indexed Literal Offset Addressing
c = 7 mode whenever f < 95 (5Fh). See
Afier Instruction Section 26.2.3 “Byte-Oriented and
W = Olh Bit-Oriented Instructions in Indexed
C = 1 ; tesult is positive Literal Offset Mode™ for details.
Z = 0
N = 0 Words: 1
Example 2: SUBLW 02h Cycles: 1
Befare Instruction Q Cycle Activity:
W = 22h Q1 Q2 Q3 Q4
¢ o Decode Read Process Wite to
After Instruction . . i
- register ‘'f Data destination
w = 00h)
% :] :result is zero Example 1: SUBWE REG, 1, 0
N = 0 Before Instruction
Example 3: SUBLW 02h @EG : g
Before Instruction ¢ =7
W = {03h After Instruction
¢ = 7 REG = 1
After Instruction w = 2 . "
W = FFh; {2's complement) % - (13 i result s positive
[= g ; result is negative N = 0
Z =
N = 1 Example 2: SUBWF REG, 0, 0
Before Instruction
REG = 2
W = 2
G = ?
After Instruction
REG = 2
w = 0
c = 1 ; result is zero
z = 1
N = 0
Example 3: SUBWF REG, 1, ©
Before Instruction
REG = 1
w = 2
C = 7
After Instruction
REG = FFh ;(2's complement)
W = 2
C = 0 ; result is negative
Z = 0
N = 1
© 2004 Microchip Technology Inc. Preliminary DS39637A-page 307

APPENDIX H: DATA SHEETS

793

PIC18F2480/2580/4480/4580

SUBWFB Subtract W from f with Borrow SWAPF Swap f
Syntax: SUBWFB f{d {.a}} Syntax. SWAPF f(d {a}}
Operands: 0« fz255 Operands: 0<fL255
de[01] de [01]
ae [0} ae [01]
Operation: () — (W) - (C) — dest Operation: {f<3:0>) - dest<7:4>,
Status Affected: N.OV,C, DC, Z {f<7:4>) - dest<3:0>
Encoding: j ploL | 10da [FEEE [fEEE j Status Affected: None
Description: Subtract_w an th’e Carry flag {borrow) Encoding: \ 0011 | Loda | FEEE i FEFE]
from register 'f (2's complement
methed). 1§ 'd’ is ‘0, the resutt is stored Descriptiars: The upper and lower nibbles of register
inW. If'd'is ‘1', the resutt is stored back ' are exchanged. If 'd" is ‘o', the resuylt
in register ‘f (default). is placed in W. if 'd’ is '1’, the result is
If ‘a’is '¢’, the Access Bank is selected. placgd in register T (CEEFEUIQ'
if'a’is ‘1’ the BSR is used to select the If‘a’ is ‘0’, the Access Bank is selected.
GPR bank (default}. If 'a’is ‘1', the BSR is used to select the
if'a’ is ‘0’ and the extended instruction GPR bank (default).
sat is enabled, this instruction operates If 'a'is ‘0" and the extended instruction
in Indexed Literal Offset Adcressing set is enabled, this instruction operates
mode whenever T < 95 (5Fh). See in Indexed Literat Offset Addressing
Section 26.2,3 “Byte-Oriented and modg whenever f< 95 (th). See
Bit-Oriented Instructions in Indexed Section 25.2.3 “Byte-Oriented and
Literal Offset Mode” for details. Bit-Oriented Instructions in Indexed
Words: 1 Literal Offset Mode” for details.
Cycles: 1 Words: i
Q Cycle Activity: Cycles: !
Q1 Q2 Q3 Q4 Q Cycle Activity:
Decode Read Process \ikite to a1 Q2 Q3 Q4
regisier ' Data destination Decode Read Process White to
Example 1; SUBWFE REG, 1, 0 register '’ Data destination
Before Instruction
REG = 1%h (0001 1001} ‘
W = Obh (0000 1101) Example. SWAPF REG, 1.0
c = 1 Before Insfruction
After instruction REG =z B3h
REG = DOCh {0000 1011) After Instruction
W = 0Dh (0000 1101} REG = 35h
c = 1
Z = 0
N = 0 ; resul! is positive
Example 2: SUBWFB REG, 0, 0
Before instruction
REG = 1Bh (0001 1011)
w = 1Ah {0001 1010}
c = 0
After Instruction
REG = 1Bh {o00l 1011}
W = 00h
c = 1
z = 1 , fesult is zere
N = 0
Example 3: SUBWFE REG, 1, 0
Before Instruction
REG = 03h {0000 0011}
W = 0QEh {0000 1101}
C = 1
After Instruction
REG = F5h {1111 0100}
; [2's comp)
W = OEh {0000 1101}
C = 0
Z = G
N = 1 ; result is negative
DS839637A-page 398 Preiiminary © 2004 Microchip Technology Inc.

794

PIC18F2480/2580/4480/4580

TBLRD

Table Read

TBLRD

Table Read (Continued)

Syntax:
Operands:
Operation:

Status Affected:
Encoding:

Description:

Words:

Cycles:

Q Cycle Activity:
=]

TBLRD (", ™+ ™1 +%)
None

if TBLRD *,

(Prag Mem (TBLPTR)) — TABLAT,
TBLPTR - No Change;

if TBLRD *+,

(Prog Mem {TBLPTRY)) -» TABLAT,
(TBLPTR) + 1 — TBLPTR;

if TBLRD *-,

(Prog Mem (TBLPTR}) — TABLAT,
{TBLPTR) -1 — TBLPTR;

if TBLRD +*,

(TBLPTR) + 1 — TBLPTR;

(Prog Mem (TBLPTR)) — TABLAT,

None

Ge00 0000 ¢Qo0 lonn

nn=0 *
=1 %4
=2 *-

=3 4%

This instruction is used to read the contents
of Program Memory (PM.). To address the
program memotry, a pointer, called Table
Pointer (TBLPTRY), Is used.
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory. TBLPTR
has a 2-Mbyte address range.
TBLPTR{0] = ¢: Least Significant Byte of
Program Memory Word
TBLPTR[D} = 1: Most Significant Byte of
Program Memory Word
The TBLRD ingtruction can modiy the vaiue
of TBLPTR as follows:
« no change
+ post-increment
« post-decrement
pre-increment

Q2 Q3 Q4

Decode

No No No
operation operation operation

No
operation

No operation No No operation
(Read Program | operation i(Wite TABLAT)
Memory)

Exemple 1;
Before Instruction
TABLAT
TBLPTR
MEMORY{00A356h)
After Instruction

TABLAT
TBLPTR

Example 2
Before Instruction
TABLAT
TBLPTR
MEMORY(Q1A357h)
MEMORY(01A358h)
After [nstruction

TABLAT
TBLPTR

TBLRD *4

TELRD +*

i

Woone - i1 u 4nn

i n

55h
00A356h
34h

34h
0DA357h
DAAh
01A357h

12h
34h

34h
01A358h

© 2004 Microchip Technology Inc.

Preliminary

DS39637A-page 399

APPENDIX H: DATA SHEETS

795

PIC18F2480/2580/4480/4580

TBLWT Table Write TBLWT Table Write {Continued)
Syntax: TBLWT (*; *+,*- +*) Example 1; TELWT %+;
Operands: None ‘Before Instruction
Operation; if TBLWT*, TABLAT = 95h
(TABLAT) -» Holding Register; ;%LLIB'I"SG REGISTER = (JQA356h
TBLPTR = No Change;
if TBLWT*+ ° (00A356h) = FFh
!) o After Instructions (table write completion)
(TABLAT) — Holding Register; TABLAT = 58h
.(TBLPTR) +1 = TBLPTR; TBLPTR = 00A35Th
if TBLWT*-, HOLDING REGISTER
(TABLAT) — Holding Register; (00A356h) = b&h
(TBLPTR) -1 — TBLPTR; ampl TBLWT +%;
if TBLWT+*,)
(TBLPTR) + 1 - TBLPTR; Before Instruction
) . TABLAT = 34h
(TABLAT) — Holding Register; el s hoan
Status Affected: None HOLDING REGISTER
‘ {01389Ah) = FFh
Encoding: 0000 0000 0000 linn HOLDING REGISTER
nn=0¢ * (01369Bh) = FFh
=1 *+ After Instruction (table write completion)
=2 *- TABLAT = 34h
=3 4% TELPTR = 01389Bh
HOLDING REGISTER
Description: This ingtruction uses the 3 LSBs of the (01389AH) = FFh
TBLPTR to determine which of the HOLDING REGISTER
8 holding registers the TABLAT is wiitten to. (N389Bh) = 34h
The hoiding registers are used to program
the contenits of Program Mermory (P.M.).
(Refer to Section 6.0 “Flash Program
Memory™ for additional details on
programming Flash memory.)
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory. TBLPTR
has a 2-MBtye address range. The LSb of
the TBLPTR selects which byte ofthe
program memaory location to access.
TBLPTR[O] = o: Least Significant Byte
of Program Memory
Word
TBLPTR[O] = 1: Most Significant Byte of
Program Memory Word
The TBLWT instruction can modify the
value of TBLPTR as follows:
+ no change
= post-increment
» post-decrement
= pre-increment
Words: i
Cycles: 2
Q Cycle Activity:
Q1 Q2 Q3 G4
Decede No No No
operationjoperation| operation
No No No Na
operation joperationjoperation| operation
{Read {(Write to
TABLAT) Holding
Register)
DS39637A-page 400 Preliminary ® 2004 Microchip Technotogy Inc.

796

PIC18F2480/2580/4480/4580

TSTFSZ Test f, Skip if 0 XORLW Exclusive OR Literal with W
Syntax: TSTFSZ f{a) Syntax: XORLW k
Operands: 0<sf=255 Operands: Q0sk<205
ae (0] Operation: (W) XOR. k- W
Operation: skipiff=0 Status Affected: N Z
Status Affected: None Enceding: [0000 | 1010 | xkkk I Kkkk |
Encoding: [or10 [outa | eese | eree | Description: The contents of W are XORed with
Description: i f = ¢, the next instruction fetched the 8-hit literal ‘K’ The result is placed
during the current instruction execution in'W.
is di;oardgcl and a NCPB {s execl._;ted, Words: 1
making this a twe-cycie instruction,
If'a’is ‘¢’ the Access Bank is selected. Cycles! 1
If'a’is ‘1, the BSR is used to select the Q Cycle Activity:
GPR bank (default). Q1 Q2 Q3 Q4
If ‘a’is ‘0’ and the extended instruction Decode Read Process White to W
set is enabled, this instruction operates Hteral ' Data
in Indexed Literal Offset Addressing
mode whenever [< 95 (5Fh). See
Section 26.2.3 “Byte-Oriented and Example; XORLW OAFh
Bit-Oriented Instructions in Indexed Before Instruction
Literal Offset Mode” for details. W =
Words: 1 After\l}\}struotiol 1A
Cycles: 12)
Note: 3 cycles if skip and followed
by a 2-word instruction.
Q Cycie Activity:
Q1 Q2 Q3 Q4
Decode Read Process No
register '’ Data operation
If skip:
™ Q2 Q3 Q4
No No No No
operation operation operation operation
if skip and followed by 2-word instruction:
Q1 Q2 Q3 Q4
No No No No
operation operation operation operation
No No No No
operation operation operation operation
Example; HERE TSTFSZ CNT, 1
NZERO
ZERO
Befare Instruction
PC = Address (HERE!
After Instruction
IFCNT = h,
PC = Address (ZERO)
IfCNT # R
PC = Address (NZERO)
@ 2004 Microchip Technology Inc. Preliminary D539637A-page 401

APPENDIX H: DATA SHEETS

797

PIC18F2480/2580/4480/4580

XORWF Exclusive OR W with f

Syntax: XORWF f{d{a}}

Operands: 0=f<255
de [01]
aeg [0,1)

Operation; (W) .XCR. {f) - dest

Status Affected: N,Z

Encoding: | o001 | 1oda | efee | eres]

Description: Exclusive OR the contents of Wwith
register 'f', If 'd’ is ‘0", the result is stored
in W.if'd’ is ‘1’, the resull is stored back
in the register 'f' {default).
If'a’is '0’, the Access Bank is selected,
if'a"is 'L’ the BSR is used to select the
GPR bank (default).
If'a’is ‘o' and the extended instruction
set is enabled, this instruction operates
in Indexed |iteral Offset Addressing
mode whenever f < 85 (5Fh). See
Section 26.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode™ for details.

Words: 1

Cycles: 1

Q Cyele Activity:

Q1 Q2 Q3 Q4
Decode Read Process Virite to

register ' Data destination

Example. XORWF REG, 1, ©

Before Instruction

REG
W

= AFh
= BSh

After Instruction

REG
w

1Ah
B5h

DS39637A-page 402

Preliminary

@ 2004 Microchip Technology Inc.

798

PIC18F2480/2580/4480/4580

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18
instruction set, PIC18F2480/2580/4480/4580 devices
also provide an optional extension to the core CPU
functionality. The added features include eight addi-
tional instructions that augment indirect and indexed
addressing operations and the implementation of
Indexed | iteral Offset Addressing mode for many of the
standard PIC18 instructions.

The additional features are disabled by default. To
enable them, users must set the XINST configuration
hit,

The instructions in the extended set can all be
classified as literal operations, which either manipulate
the File Select Registers or use them for indexed
addressing. Two of the instructions, ADDFSR and
SUBFSR, each have an additional special instantiation
for using FSR2. These versions (ADDULNK and
SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented
to optimize re-entrant program code (that is, code that
is recursive or that uses & software stack) written in
high-level languages, particularly C. Among other
things, they allow users working In high-level
languages to perform certain operations on data
structures more efficiently. These include:

= dynamic aflocation and de-allocation of software
stack space when entering and feaving
subroutines

+ function pointer invocation
= software Stack Pointer manipulation

+ manipulation of variables located in a software
stack

A sumanary of the instructions in the extended instruc-
tion set is provided in Table 25-3. Detailed deseriptions
are provided in Section 25.2.2 “Extended Instruction
Set”. The opcode field descriptions in Table 25-1 apply
to both the standard and extended PIC18 instruction
sets.

 Note:

The mstrueﬂen set extension and the
. Indexed Lateral foset Addressing mode
e Were: demgned for optimizing applications

L wiitten in€; the. user r may likely never use
. fése instructions directly in assembler.

" “The:syntax for ‘these: eommands is pro-

-Mdedas a referancq for.users who may be
reviewing. code that has been generated
by acompiler.

2521 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed argu-
ments, using one of the File Select Registers and some
offset to specify a source or destination register. When
an argument for an instruction serves as part of
indexed addressing, it is enclosed in square brackets
(‘[T"). This is done to indicate that the argument is used
as an index or offset. MPASM™ Assembler will flag an
error if it determines that an index or offset value is not
bracketed.

When the extended instruction set is enabled, brackets
are also used to indicate index arguments in byte-
orlented and bit-oriented instructions. This is in addition
to other changes in their syntax. For more details, see
Section 25.2.3.1 “Extended Instruction Syntax with
Standard PIC18 Commands”.

Note:. | In the past; square brackets have been
used to denote-optional arguments in the
.- PIC18 and earlier instruction sets. In this

‘text and going forward, optional arguments
are denoted by braces (*{ }).

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET
Mnemonic, - 16-Bit Instruction Word Status
o ds Description Cycles Affected
peran MSb LSb
ADDFSR f k Add literal to FSR 1 1110 1000 ffxk kkkk None
ADDULNK Kk Add literal to FSR2 and return 2 1110 1000 11kk kkkk None
CALLW Call subroutine using WREG 2 0000 0000 0001 0100 Nohe
MOVSF Ze, fy |Move z, {source) to 1stword 2 1110 1011 O0z%Z %ZZE None
fa (destination) 2nd word 1111 f£££f ffff £fff
MOVSS Zs, Zg iMove z; (source) to 1stwaord 2 1110 1011 1lzzz 32zZzZ Neone
Z4 (destination)2nd word 1111 XXXX X2ZZZ 2222
PUSHL k Store literal at FSR2, 1 1110 1010 kkkk kkkk Nane
decrement FSR2
SUBFSR f k Subtract literal from FSR 1 1110 100l f£fkk kkkk None
SUBULNK k Subtract literal from FSR2 and 2 111¢ 1001 11kk kkkk None
return '
@ 2004 Microchip Technology Inc. Preliminary DS39637A-page 403

APPENDIX H: DATA SHEETS

799

PIC18F2480/2580/4480/4580

2522 EXTENDED INSTRUCTION SET

ADDFSR Add Literal to FSR ADDULNK Add Literal to FSR2 and Return
Syntax: ADDFSR f k Syntax: ADDULNK k
Operands: 0<k<63 Operands: 0<ks63
fef0,1,2] Operation: FSR2 + k — FSR2,
Operation: FSR{f) + k — FSR(PC = (TOS)
Status Affected: None Status Affecied: None
Encoding: [1110 |1000 [eexk [k | Encoding: {1110 [1000 |11k | kkek |
Description: The 6-hit literal 'k’ is added to the Description: The 6-bit literal 'k’ is added to the
contents of the FSR specified by 'f". contents of FSR2. A RETURN is then
Words: 1 executed by loading the PC with the
Cycles: 1 TOs.
Q Cycle Activity: The ilr;isiructéon t.akes rft;w CB;C:-‘S .to "
execute; a NGP is performed during the
DeQ1d Rozd b a3 Wkg‘lt second cycie.
code me: " rg:f:s FSeR o This may be thought of as a special case
of the ADDFSR instruction, where f=3
{binary '11"); it operates only on FSR2.
Words: 1
Example: ADDFSR 2, 23h Cyoles: a
Before Instruction
FSR2 = Q3FFh & Crcle Activity:
After Instruction yele Activity.
FSR2 = 0422h at Qz a3 Q4
Decode Read Process Write to
literad 'k’ Data FSR
No No No No
Operation Operation Operation Operation
Example: ADDULNK 23h
Befare Instruction
FSR2 = Q3FFh
PG = 0100k
TOS = 02AFh
After Instruction
FSR2 = 0422h
PC = 02AFh
TOS = TOS-1

Note: Al PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction syntax then becomes: flabel} instruction argument(s).

DS$39637A-page 404

Preliminary

® 2004 Microchip Technology Inc.

800

PIC18F2480/2580/4480/4580

CALLW Subroutine Call Using WREG MOVSF Move Indexed to f
Syntax: CALLW Syntax: MOVSF {z] {4
Operands: None Operands: U<z 5127
Operation: (PC + 2} —» TOS, 0=1y<4085
(W) - PCL, Operation: ((FSR2} +2z) — g
(PCLATH) — PCH, Status Affected: None
(PCLATU) — PCU) ’
Status Affected: None Encoding:

‘ 1st word {source} 111¢ 1011 UZzZZ ZZZZ,
Encodlng: | Q000 | aa00 l G001 | 0100 [2nd ward (desﬁﬂ.) 1111 fEEf FEEf ffffd
Description First, the return address (PC + 2) is Description: ;

ption: The contents of the source register are
pushed m;uhe retum Stad‘#giﬂ;‘the moved to destination register 'fy'. The
co_ntgnts ¢ gre _written te the actual address of the source register is
existing value is discarded. Then, the determined by adding the 7-bit literal
contents of PCLATH and PCLATU are offset 'z in the first word to the value of
Iatched'lnto PCH and PCU, . FSR2. The address of the destination
respectively. The second cycle is register is specified by the 12-bit literal
executed as a NOP instruction while the ‘.7 in the second word. Both addresses
new next instruction is fetched. c:n be anywhere in thé 4096-byte data
Unlike CALL, there is no option to space (000h to FFFh).
update W, Status or BSR. The mMOvSF instruction cannot use the
Words: t PCL, TOSU, TOSH or TOSL as the
Cycles: > destination register.
o if the resultant source address points to
Q Cycle Activity: an indirect addressing register, the
a1 Q2 Q3 Q4 value returned wiil be Q0h.
Decode Read Push PC to No Words: 2
WREG stack operation]
No No No No Cycles: 2
operation operation operation operation Q Cycle Activity:
Q1 Q2 Q3 Q4
E - Decode Determine | Determine Read
Example: RERE CALLW source addr |source addr | source reg
Befare Enstruction Decode [No Wirite
PG = address (HERE) operation | cperation | register T
PCLATH = 10h pe P et
PCLATU = 00h No dummy (dest)
W = D6h read
Afer Instruction
PC = D01006h
;ng ™ : ?ggress {HERE + 2) Example: MOVSF [05h], REG2
PCLATU = DOh Before Insfruction
w = 06h FSR2 = 80h
Contents
of 85h = 33h
REG2 = 1th
After Instruction
FSRZ = BOh
Contents
of 85h = 33h
REG2 = 33h

® 2004 Microchip Technology Inc.

Preliminary

DS38637A-page 405

APPENDIX H: DATA SHEETS

801

PIC18F2480/2580/4480/4580

MOVSS Move Indexed to Indexed PUSHL Store Literal at FSR2, Decrement FSR2
Syntax: MOVSS [z.]. [24] Syntax: PUSHL k
Operands: Q<z <127 Operands: 0<k<255
<2a<127
_ 0=2g=12 Operation: k - (FSR2),
Operation: ((FSR2) + z5) -5 {{FSR2) + 2y) FSR2 — 1—s FSR2
Status Affected: None Status Affected: None
Encoding: Encoding: | 1111 | 1010 | wWikkk | kkik |
1st word (source) 1110 1011 lzzz 2Z2Z o e — -
2nd word (dest) 1111 . xzaz 22224 Description: The 8-bit fiteral 'K’ is w_mten to the data _
memory address specified by FSR2. FSR2 is
Description The contents of the source register are decremented by 1 after the operation.
moved to the destination register. The This instruction allows users to push vaiues
addresses of the source and destination onto a software stack
registers are determined by adding the ’
7-bit Yiteral offsets 'z.’ or 'z, Words: 1
respectively, to the value of FSR2. Both Cycles: 1
registers can be focated anywhere in —
the 4086-byte data memory space Q Cycle Activity:
(060N to FFFh). @1 Q2 Q3 Q4
The MOVSS instruction cannot use the Decode Read 'k Process Vifite to
PCL, TOSU, TOSH or TOSL as the data destination
destination register.
If the resultant source address points to)
an indirect addressing register, the mple: PUSHL 08h
value returned will be 00h. If the Before instruction
resultant destination address points to FSR2H:FSR2L = Q1ECh
an indirect addressing register, the Memory ((1ECh) = 00h
instruction wili execute as a NOP. _
. After Instruction
Words: 2 FSRZH:FSR2L = D1EBh
Cycies: 2 Memory (01 ECh) = 08h
Q Cycle Activity:
Qi1 Q2 Q3 Q4
Decode Determine | Determine Read
source addr | source addr | source reg
Decode Determine | Determine Write
dest addr destaddr | to dest reg
Example: MOVSS [05h], [08h]
Befare Instruction
FSR2 = 80h
Contents
of 85h = 33h
Contents
of 86h = 1ih
After Instruction
FSR2 = 80h
Contents
of 85h = 33h
Contenis
of 86h = 33h
DS39637A-page 406 Preliminary @ 2004 Microchip Technology inc.

802

PIC18F2480/2580/4480/4580

SUBFSR Subtract Literal from FSR SUBULNK Subtract Literal from FSR2 and Return
Syntax: SUBFSR f, k Syntax: SUBULNK k
Operands: 0<k=<63 Operands: 0<k=63
fE[0,1,2] Operation: FSR2 - k — FSR2
Operation; FSRf - K — FSRf (TOSY = PC
Status Affected: None Status Affected: None
Encoding: | 11190 | o0l [ffkk | kkkk | Encoding: | 1110 [1001 11kk kkkk
Description: The 6-bit literal 'K’ is subtracted from Description: The 6-bit literal ‘K’ is subtracied from the
the contents of the FSR specified contents of the FSR2. A RETURN is then
by ‘f. executed by loading the PC with the TOS.
Words: 1 The instruction takes two cycles to execute;
Cycles: 1 a Nop is performed during the second cycle.
Q Cycie Activity: This may be.!hough! of asha spfecigl (c;se of
he suB#s8 instruction, where = ina
at Q2 Qs Q4 F1:L‘);l;‘t operatess only oln FSR2. i
Decode Read Process Mte t_o Words: 1
register 'f Data destination
Cycles: 2
Q Cycle Activity:
Example: SUBFSR 2, 23h Q1 Q2 Qs Q4
Before Instruction Decode Read Process Vikite to
FER2 = 03FFh register ‘f' Data destination
After Instruction No No No No
F8RZ = 03DCh Operation | Operation | Operation | Operation
Example: SUBULNK 23h
Before Instruction
FSR2 = Q3FFh
PC = 0100h
After Instruction
FSR2 = 03DCh
PC = (TOS)
@ 2004 Microchip Technology Inc. Preliminary DS39637A-page 407

APPENDIX H: DATA SHEETS

803

PIC18F2480/2580/4480/4580

2523 BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE

Note: Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.

in addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 5.6.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embed-
ded in opcodes are treated as literal memory locations:
either as a location in the Access Bank (a = 0), orin a
GPR bank designated by the BSR (a = 1). When the
extended instruction set is enabled and a = o, however,
a file register argument of 5Fh or less is interpreted as
an offset from the pointer value in FSR2 and not as a
literal address. For practical pusrposes, this means that
all instructions that use the Access RAM bit as an
argument — that is, all byte-oriented and bit-oriented
instructions, or almost half of the core PIC18 instructions
- may behave differently when the extended instruction
set is enabled.

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technigue is used, it may be
necessaly to save the value of FSR2 and restore it
when maving back and forth between 'C’ and assembly
routines in order to preserve the Stack Pointer. Users
must aiso keep in mind the syntax requirements of the
extended instruction set (see Section252.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).

Although the indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 8Fh or less are used for Indexed Literal Offset
Addressing.

Represertative examples of typical byte-griented and
bit-oriented instructions in the indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand
conditions shown in the examples are applicable to all
mnstructions of these types.

25231 Extended Instruction Syntax with
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, 'f, in the standard byte-oriented and
bit-oriented commands is replaced with the (iteral offset
vaiue, 'K'. As already noted, this occurs only when ‘f is
less than or equalto 5Fh. When an offset value is used,
it must be indicated by square brackets ([T'). As with
the extended instructions, the use of brackets indicates
te the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM™ Assembler.

If the index argument is properly bracketed for (ndexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
'0’. This is in contrast to standard operation (extended
instrustion set disabled) when 'a' is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
Assembler.

The destination argument, 'd’, functions as before.

in the latest versions of the MPASM assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /vy, or the PE directive in the
source listing,

2524 CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET

It is important to note that the extensions to the instruc-
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or wiite to the wrong data
addresses.

When porting an application to the PIC18F2480/2580/
4480/4580, it is very important to consider the type of
code. A large, re-entrant application that is written in 'C’
and would benefit from efficient compilation will do well
when using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.

DS38637A-page 408

Preliminary

@ 2004 Microchip Technology Inc.

804

PIC18F2480/2580/4480/4580

ADD W to Indexed

Bit Set Indexed

ADDWF {Indexed Literal Offset mode) BSF {Indexed Literal Offset mode)
Syntax: ADDWF K] {.d} Syntax: BSF k. b
Qperands: O<k<85 Operands: D<f<95
de [0.1] OD<be?
a=0 a=o
Operation: (W) + ((FSR2) + k} — dest Operation: 1 — ((FSR2 + k))
Status Affected: N, OV, C,DC,Z Status Affected: None
Encoding: [ooto | o1d0 | iackk] Kkik | Encoding: [1000 | povo | ok | x|
Qescription: The contents of W are added te the contents Description: Bit ‘b’ of the reqgister indicated by FSR2,
of the register indicated by FSR2, offset by the offset by the value 'K', is set.
value K. Waords: 1
If'd’ is ‘o', the result is stored in WL If ‘d’is '1', Cyoles: 1
the resut is stored back in register 'f' (default). yeres.
Words: 1 G Cycle Activity:
Cycles: 1 Q1t Qz Q3 a4
o Decode Read Process Wite to
Q Cycie Activity: register ‘f Data destination
o} Q2 Q3 Q4
Decode Read ‘i’ Process Write to Exampie: BSF [FLAG OPSTI, 7
Data destination Before insiruction
FLAG_OFST = DAh
Example: ADDWF [CFST] , 0 FSR2 = 0AQCh
Contents
Before Instruction of 0ADAR = §5h
w = I After Instruction
FeRa : Bkoon Conters
= of 0AGAO = D5h
Contents
of CAZCh = 20h
After [nstruction
W = 37h
Contents
of 0A2Ch = h SETF Set Indexed
{Indexed Literal Offset mode)
Syntax: SETF [k]
Operands: 0<k=<95
Operation: FFh - ((FSR2) + k)
Status Affected: None
Encoding: | o110 | 1000 | kkkk 1 kkkk J
Description: The contents of the register indicated by
FSR2, offset by 'k', are setto FFh.
Words: 1
Cycles: 1
Q Cycle Activity:
("3 Qz Q3 Q4
Decode Read 'K Process Wiite
Data register
Example: SETF [OFST]
Before Instruction
CFST = 2Ch
FSR2 = 0AQOh
Contents
of 0A2Ch = 00h
Afer Instruction
Contents
of 0A2Ch = FFh
® 2004 Microchip Technolegy Inc. Preliminary DS39637A-page 409

APPENDIX H: DATA SHEETS

805

PIC18F2480/2580/4480/4580

2525 SPECIAL CONSIDERATIONS WITH
MICROCHIP MPLAB® IDE TOOLS

The latest versions of Microchip’s software tools have
been designed to fully support the extended instruction
set of the PIC18F2480/2580/4480/4580 family of
devices. This includes the MPLAB C18 C compiler,
MPASM assembly language and MPLAB integrated
Development Envirenment (IDE).

When selecting a target device for software develop-
ment, MPLAB IDE will automatically set default config-
uration bits for that device. The default setting for the
XINST configuration bit is 'o’, disabling the extended
instruction set and Indexed Literal Offset Addressing
mode. For proper execution of applications developed
to take advantage of the extended instruction set,
XINST must be set during programming.

To develop software for the extended instruction set,
the user must enable support for the instructions and
the Indexed Addressing mode in their language took(s).
Depending on the environment being used, this may be
done in several ways:

« A menu option, or dialog box within the
environment, that allows the user to configure the
language tool and its settings for the project

* A command line option

+ A directive in the source code

These options vary between different compiters,
assemblers and develepment environments. Users are
encouraged to review the documentation accompany-
ing their development systems for the appropriate
information.

DS39637A-page 410

Preliminary

© 2004 Microchip Technology Inc.

806

