EMTR-2011: Microcontrollers and Digital Logic Assignment 1

Due date: 1:00PM, Wednesday, Sept 25

Question 1

- Do the following conversions:
- (1) 11101101_2 to decimal.
- (2) 101011010111 to hex.
- (3) 32BH to binary.
- (4) The following hexadecimal numbers to decimal.
 - (a) 6B2H;
 - (b) 9F2EH
- (5) The following decimal numbers to hex:
 - (a) 75;
 - (b) 938;
 - (c) 2048

Question 2

Use 2's complement method to do the following subtractions:

- (a) 11011 10101
- (b) 110010 111001

Question 3

Verify the following functions

- (a) $\overline{x \cdot y} = \overline{x} + \overline{y}$ (De Morgan's law)
- (b) $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$ (Consensus)

Question 4

(a) Design a logic circuit with two inputs, x_1 and x_2 , with required behavior shown in the truth table.

<u>x1</u>	x_2	<u>f</u>
0	0	1
0	1	0
1	0	1
1	1	1

(b) Use the Karnaugh map to derive the circuit output.

Question 5

Construction the Karnaugh maps based on the following truth tables and derive the circuit outputs.

\underline{x}_1	x_2	<u>x</u> 3	<u>f</u>
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

<u>x1</u>	x_2	<u>x</u> 3	<u>f</u>
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1